![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem6ALTV | Structured version Visualization version GIF version |
Description: Lemma 6 for funcringcsetcALTV 48204. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | ⊢ 𝑅 = (RingCatALTV‘𝑈) |
funcringcsetcALTV.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetclem6ALTV | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.r | . . . . 5 ⊢ 𝑅 = (RingCatALTV‘𝑈) | |
2 | funcringcsetcALTV.s | . . . . 5 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcringcsetcALTV.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | funcringcsetcALTV.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcringcsetcALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcringcsetcALTV.f | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcringcsetcALTV.g | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetclem5ALTV 48199 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
9 | 8 | 3adant3 1133 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
10 | 9 | fveq1d 6916 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑋 RingHom 𝑌))‘𝐻)) |
11 | fvresi 7200 | . . 3 ⊢ (𝐻 ∈ (𝑋 RingHom 𝑌) → (( I ↾ (𝑋 RingHom 𝑌))‘𝐻) = 𝐻) | |
12 | 11 | 3ad2ant3 1136 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (( I ↾ (𝑋 RingHom 𝑌))‘𝐻) = 𝐻) |
13 | 10, 12 | eqtrd 2777 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5234 I cid 5586 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 WUnicwun 10747 Basecbs 17254 SetCatcsetc 18138 RingHom crh 20495 RingCatALTVcringcALTV 48169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 |
This theorem is referenced by: funcringcsetclem9ALTV 48203 |
Copyright terms: Public domain | W3C validator |