![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem6ALTV | Structured version Visualization version GIF version |
Description: Lemma 6 for funcringcsetcALTV 46956. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | β’ π = (RingCatALTVβπ) |
funcringcsetcALTV.s | β’ π = (SetCatβπ) |
funcringcsetcALTV.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV.u | β’ (π β π β WUni) |
funcringcsetcALTV.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcringcsetcALTV.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) |
Ref | Expression |
---|---|
funcringcsetclem6ALTV | β’ ((π β§ (π β π΅ β§ π β π΅) β§ π» β (π RingHom π)) β ((ππΊπ)βπ») = π») |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.r | . . . . 5 β’ π = (RingCatALTVβπ) | |
2 | funcringcsetcALTV.s | . . . . 5 β’ π = (SetCatβπ) | |
3 | funcringcsetcALTV.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
4 | funcringcsetcALTV.c | . . . . 5 β’ πΆ = (Baseβπ) | |
5 | funcringcsetcALTV.u | . . . . 5 β’ (π β π β WUni) | |
6 | funcringcsetcALTV.f | . . . . 5 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
7 | funcringcsetcALTV.g | . . . . 5 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | funcringcsetclem5ALTV 46951 | . . . 4 β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΊπ) = ( I βΎ (π RingHom π))) |
9 | 8 | 3adant3 1132 | . . 3 β’ ((π β§ (π β π΅ β§ π β π΅) β§ π» β (π RingHom π)) β (ππΊπ) = ( I βΎ (π RingHom π))) |
10 | 9 | fveq1d 6893 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅) β§ π» β (π RingHom π)) β ((ππΊπ)βπ») = (( I βΎ (π RingHom π))βπ»)) |
11 | fvresi 7170 | . . 3 β’ (π» β (π RingHom π) β (( I βΎ (π RingHom π))βπ») = π») | |
12 | 11 | 3ad2ant3 1135 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅) β§ π» β (π RingHom π)) β (( I βΎ (π RingHom π))βπ») = π») |
13 | 10, 12 | eqtrd 2772 | 1 β’ ((π β§ (π β π΅ β§ π β π΅) β§ π» β (π RingHom π)) β ((ππΊπ)βπ») = π») |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β¦ cmpt 5231 I cid 5573 βΎ cres 5678 βcfv 6543 (class class class)co 7408 β cmpo 7410 WUnicwun 10694 Basecbs 17143 SetCatcsetc 18024 RingHom crh 20247 RingCatALTVcringcALTV 46892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 |
This theorem is referenced by: funcringcsetclem9ALTV 46955 |
Copyright terms: Public domain | W3C validator |