Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem6ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem6ALTV 48200
Description: Lemma 6 for funcringcsetcALTV 48204. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem6ALTV ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem funcringcsetclem6ALTV
StepHypRef Expression
1 funcringcsetcALTV.r . . . . 5 𝑅 = (RingCatALTV‘𝑈)
2 funcringcsetcALTV.s . . . . 5 𝑆 = (SetCat‘𝑈)
3 funcringcsetcALTV.b . . . . 5 𝐵 = (Base‘𝑅)
4 funcringcsetcALTV.c . . . . 5 𝐶 = (Base‘𝑆)
5 funcringcsetcALTV.u . . . . 5 (𝜑𝑈 ∈ WUni)
6 funcringcsetcALTV.f . . . . 5 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcringcsetcALTV.g . . . . 5 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
81, 2, 3, 4, 5, 6, 7funcringcsetclem5ALTV 48199 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
983adant3 1133 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
109fveq1d 6916 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = (( I ↾ (𝑋 RingHom 𝑌))‘𝐻))
11 fvresi 7200 . . 3 (𝐻 ∈ (𝑋 RingHom 𝑌) → (( I ↾ (𝑋 RingHom 𝑌))‘𝐻) = 𝐻)
12113ad2ant3 1136 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → (( I ↾ (𝑋 RingHom 𝑌))‘𝐻) = 𝐻)
1310, 12eqtrd 2777 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  cmpt 5234   I cid 5586  cres 5695  cfv 6569  (class class class)co 7438  cmpo 7440  WUnicwun 10747  Basecbs 17254  SetCatcsetc 18138   RingHom crh 20495  RingCatALTVcringcALTV 48169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443
This theorem is referenced by:  funcringcsetclem9ALTV  48203
  Copyright terms: Public domain W3C validator