Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem5ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem5ALTV 46435
Description: Lemma 5 for funcringcsetcALTV 46440. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTVβ€˜π‘ˆ)
funcringcsetcALTV.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcringcsetcALTV.b 𝐡 = (Baseβ€˜π‘…)
funcringcsetcALTV.c 𝐢 = (Baseβ€˜π‘†)
funcringcsetcALTV.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcringcsetcALTV.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcringcsetcALTV.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem5ALTV ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ) = ( I β†Ύ (𝑋 RingHom π‘Œ)))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑋   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   𝑦,𝑋   π‘₯,π‘Œ,𝑦   πœ‘,𝑦
Allowed substitution hints:   𝐢(𝑦)   𝑅(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem funcringcsetclem5ALTV
StepHypRef Expression
1 funcringcsetcALTV.g . . 3 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
21adantr 482 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
3 oveq12 7371 . . . 4 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯ RingHom 𝑦) = (𝑋 RingHom π‘Œ))
43adantl 483 . . 3 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (π‘₯ RingHom 𝑦) = (𝑋 RingHom π‘Œ))
54reseq2d 5942 . 2 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ ( I β†Ύ (π‘₯ RingHom 𝑦)) = ( I β†Ύ (𝑋 RingHom π‘Œ)))
6 simprl 770 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
7 simprr 772 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
8 ovexd 7397 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋 RingHom π‘Œ) ∈ V)
98resiexd 7171 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ( I β†Ύ (𝑋 RingHom π‘Œ)) ∈ V)
102, 5, 6, 7, 9ovmpod 7512 1 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ) = ( I β†Ύ (𝑋 RingHom π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3448   ↦ cmpt 5193   I cid 5535   β†Ύ cres 5640  β€˜cfv 6501  (class class class)co 7362   ∈ cmpo 7364  WUnicwun 10643  Basecbs 17090  SetCatcsetc 17968   RingHom crh 20152  RingCatALTVcringcALTV 46376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367
This theorem is referenced by:  funcringcsetclem6ALTV  46436  funcringcsetclem7ALTV  46437  funcringcsetclem8ALTV  46438  funcringcsetclem9ALTV  46439
  Copyright terms: Public domain W3C validator