MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem4 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem4 18066
Description: Lemma 4 for funcsetcestrc 18072. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
Assertion
Ref Expression
funcsetcestrclem4 (𝜑𝐺 Fn (𝐶 × 𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem4
StepHypRef Expression
1 eqid 2733 . . 3 (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥)))
2 ovex 7385 . . . 4 (𝑦m 𝑥) ∈ V
3 resiexg 7848 . . . 4 ((𝑦m 𝑥) ∈ V → ( I ↾ (𝑦m 𝑥)) ∈ V)
42, 3ax-mp 5 . . 3 ( I ↾ (𝑦m 𝑥)) ∈ V
51, 4fnmpoi 8008 . 2 (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) Fn (𝐶 × 𝐶)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
76fneq1d 6579 . 2 (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) Fn (𝐶 × 𝐶)))
85, 7mpbiri 258 1 (𝜑𝐺 Fn (𝐶 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4575  cop 4581  cmpt 5174   I cid 5513   × cxp 5617  cres 5621   Fn wfn 6481  cfv 6486  (class class class)co 7352  cmpo 7354  ωcom 7802  m cmap 8756  WUnicwun 10598  ndxcnx 17106  Basecbs 17122  SetCatcsetc 17984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  funcsetcestrc  18072
  Copyright terms: Public domain W3C validator