![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcsetcestrc 18126. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
Ref | Expression |
---|---|
funcsetcestrclem4 | ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) | |
2 | ovex 7445 | . . . 4 ⊢ (𝑦 ↑m 𝑥) ∈ V | |
3 | resiexg 7909 | . . . 4 ⊢ ((𝑦 ↑m 𝑥) ∈ V → ( I ↾ (𝑦 ↑m 𝑥)) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑦 ↑m 𝑥)) ∈ V |
5 | 1, 4 | fnmpoi 8060 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶) |
6 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
7 | 6 | fneq1d 6642 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶))) |
8 | 5, 7 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 〈cop 4634 ↦ cmpt 5231 I cid 5573 × cxp 5674 ↾ cres 5678 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 ωcom 7859 ↑m cmap 8826 WUnicwun 10701 ndxcnx 17133 Basecbs 17151 SetCatcsetc 18035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: funcsetcestrc 18126 |
Copyright terms: Public domain | W3C validator |