| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for funcsetcestrc 18181. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
| Ref | Expression |
|---|---|
| funcsetcestrclem4 | ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) | |
| 2 | ovex 7443 | . . . 4 ⊢ (𝑦 ↑m 𝑥) ∈ V | |
| 3 | resiexg 7913 | . . . 4 ⊢ ((𝑦 ↑m 𝑥) ∈ V → ( I ↾ (𝑦 ↑m 𝑥)) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑦 ↑m 𝑥)) ∈ V |
| 5 | 1, 4 | fnmpoi 8074 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶) |
| 6 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
| 7 | 6 | fneq1d 6636 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶))) |
| 8 | 5, 7 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 ↦ cmpt 5206 I cid 5552 × cxp 5657 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ωcom 7866 ↑m cmap 8845 WUnicwun 10719 ndxcnx 17217 Basecbs 17233 SetCatcsetc 18093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: funcsetcestrc 18181 |
| Copyright terms: Public domain | W3C validator |