| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcsetcestrclem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for funcsetcestrc 18067. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
| Ref | Expression |
|---|---|
| funcsetcestrclem4 | ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) | |
| 2 | ovex 7379 | . . . 4 ⊢ (𝑦 ↑m 𝑥) ∈ V | |
| 3 | resiexg 7842 | . . . 4 ⊢ ((𝑦 ↑m 𝑥) ∈ V → ( I ↾ (𝑦 ↑m 𝑥)) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑦 ↑m 𝑥)) ∈ V |
| 5 | 1, 4 | fnmpoi 8002 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶) |
| 6 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
| 7 | 6 | fneq1d 6574 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶))) |
| 8 | 5, 7 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 ↦ cmpt 5172 I cid 5510 × cxp 5614 ↾ cres 5618 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 ↑m cmap 8750 WUnicwun 10588 ndxcnx 17101 Basecbs 17117 SetCatcsetc 17979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: funcsetcestrc 18067 |
| Copyright terms: Public domain | W3C validator |