Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcsetcestrc 17797. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
Ref | Expression |
---|---|
funcsetcestrclem4 | ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) | |
2 | ovex 7288 | . . . 4 ⊢ (𝑦 ↑m 𝑥) ∈ V | |
3 | resiexg 7735 | . . . 4 ⊢ ((𝑦 ↑m 𝑥) ∈ V → ( I ↾ (𝑦 ↑m 𝑥)) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑦 ↑m 𝑥)) ∈ V |
5 | 1, 4 | fnmpoi 7883 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶) |
6 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
7 | 6 | fneq1d 6510 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶))) |
8 | 5, 7 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ↦ cmpt 5153 I cid 5479 × cxp 5578 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 ↑m cmap 8573 WUnicwun 10387 ndxcnx 16822 Basecbs 16840 SetCatcsetc 17706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: funcsetcestrc 17797 |
Copyright terms: Public domain | W3C validator |