MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem4 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem4 18126
Description: Lemma 4 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
Assertion
Ref Expression
funcsetcestrclem4 (𝜑𝐺 Fn (𝐶 × 𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem4
StepHypRef Expression
1 eqid 2730 . . 3 (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥)))
2 ovex 7423 . . . 4 (𝑦m 𝑥) ∈ V
3 resiexg 7891 . . . 4 ((𝑦m 𝑥) ∈ V → ( I ↾ (𝑦m 𝑥)) ∈ V)
42, 3ax-mp 5 . . 3 ( I ↾ (𝑦m 𝑥)) ∈ V
51, 4fnmpoi 8052 . 2 (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) Fn (𝐶 × 𝐶)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
76fneq1d 6614 . 2 (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) Fn (𝐶 × 𝐶)))
85, 7mpbiri 258 1 (𝜑𝐺 Fn (𝐶 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598  cmpt 5191   I cid 5535   × cxp 5639  cres 5643   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  m cmap 8802  WUnicwun 10660  ndxcnx 17170  Basecbs 17186  SetCatcsetc 18044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972
This theorem is referenced by:  funcsetcestrc  18132
  Copyright terms: Public domain W3C validator