MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem4 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem4 18214
Description: Lemma 4 for funcsetcestrc 18220. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
Assertion
Ref Expression
funcsetcestrclem4 (𝜑𝐺 Fn (𝐶 × 𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem4
StepHypRef Expression
1 eqid 2735 . . 3 (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥)))
2 ovex 7464 . . . 4 (𝑦m 𝑥) ∈ V
3 resiexg 7935 . . . 4 ((𝑦m 𝑥) ∈ V → ( I ↾ (𝑦m 𝑥)) ∈ V)
42, 3ax-mp 5 . . 3 ( I ↾ (𝑦m 𝑥)) ∈ V
51, 4fnmpoi 8094 . 2 (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) Fn (𝐶 × 𝐶)
6 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
76fneq1d 6662 . 2 (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))) Fn (𝐶 × 𝐶)))
85, 7mpbiri 258 1 (𝜑𝐺 Fn (𝐶 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231   I cid 5582   × cxp 5687  cres 5691   Fn wfn 6558  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  m cmap 8865  WUnicwun 10738  ndxcnx 17227  Basecbs 17245  SetCatcsetc 18129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  funcsetcestrc  18220
  Copyright terms: Public domain W3C validator