Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcsetcestrc 17891. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
Ref | Expression |
---|---|
funcsetcestrclem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
3 | oveq12 7276 | . . . . 5 ⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (𝑦 ↑m 𝑥) = (𝑌 ↑m 𝑋)) | |
4 | 3 | ancoms 459 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑦 ↑m 𝑥) = (𝑌 ↑m 𝑋)) |
5 | 4 | reseq2d 5884 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ( I ↾ (𝑦 ↑m 𝑥)) = ( I ↾ (𝑌 ↑m 𝑋))) |
6 | 5 | adantl 482 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ (𝑦 ↑m 𝑥)) = ( I ↾ (𝑌 ↑m 𝑋))) |
7 | simprl 768 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
8 | simprr 770 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
9 | ovexd 7302 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑌 ↑m 𝑋) ∈ V) | |
10 | 9 | resiexd 7084 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ( I ↾ (𝑌 ↑m 𝑋)) ∈ V) |
11 | 2, 6, 7, 8, 10 | ovmpod 7415 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 {csn 4561 〈cop 4567 ↦ cmpt 5156 I cid 5483 ↾ cres 5586 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 ωcom 7702 ↑m cmap 8602 WUnicwun 10466 ndxcnx 16904 Basecbs 16922 SetCatcsetc 17800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 |
This theorem is referenced by: funcsetcestrclem6 17887 funcsetcestrclem7 17888 funcsetcestrclem8 17889 funcsetcestrclem9 17890 |
Copyright terms: Public domain | W3C validator |