![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcsetcestrc 18233. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
Ref | Expression |
---|---|
funcsetcestrclem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
3 | oveq12 7457 | . . . . 5 ⊢ ((𝑦 = 𝑌 ∧ 𝑥 = 𝑋) → (𝑦 ↑m 𝑥) = (𝑌 ↑m 𝑋)) | |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑦 ↑m 𝑥) = (𝑌 ↑m 𝑋)) |
5 | 4 | reseq2d 6009 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ( I ↾ (𝑦 ↑m 𝑥)) = ( I ↾ (𝑌 ↑m 𝑋))) |
6 | 5 | adantl 481 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ (𝑦 ↑m 𝑥)) = ( I ↾ (𝑌 ↑m 𝑋))) |
7 | simprl 770 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑋 ∈ 𝐶) | |
8 | simprr 772 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → 𝑌 ∈ 𝐶) | |
9 | ovexd 7483 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑌 ↑m 𝑋) ∈ V) | |
10 | 9 | resiexd 7253 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → ( I ↾ (𝑌 ↑m 𝑋)) ∈ V) |
11 | 2, 6, 7, 8, 10 | ovmpod 7602 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 ↑m cmap 8884 WUnicwun 10769 ndxcnx 17240 Basecbs 17258 SetCatcsetc 18142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: funcsetcestrclem6 18229 funcsetcestrclem7 18230 funcsetcestrclem8 18231 funcsetcestrclem9 18232 |
Copyright terms: Public domain | W3C validator |