MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem5 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem5 17886
Description: Lemma 5 for funcsetcestrc 17891. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
Assertion
Ref Expression
funcsetcestrclem5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌m 𝑋)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem5
StepHypRef Expression
1 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
21adantr 481 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
3 oveq12 7276 . . . . 5 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦m 𝑥) = (𝑌m 𝑋))
43ancoms 459 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦m 𝑥) = (𝑌m 𝑋))
54reseq2d 5884 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ( I ↾ (𝑦m 𝑥)) = ( I ↾ (𝑌m 𝑋)))
65adantl 482 . 2 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ (𝑦m 𝑥)) = ( I ↾ (𝑌m 𝑋)))
7 simprl 768 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
8 simprr 770 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
9 ovexd 7302 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌m 𝑋) ∈ V)
109resiexd 7084 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌m 𝑋)) ∈ V)
112, 6, 7, 8, 10ovmpod 7415 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌m 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  {csn 4561  cop 4567  cmpt 5156   I cid 5483  cres 5586  cfv 6426  (class class class)co 7267  cmpo 7269  ωcom 7702  m cmap 8602  WUnicwun 10466  ndxcnx 16904  Basecbs 16922  SetCatcsetc 17800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272
This theorem is referenced by:  funcsetcestrclem6  17887  funcsetcestrclem7  17888  funcsetcestrclem8  17889  funcsetcestrclem9  17890
  Copyright terms: Public domain W3C validator