MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem5 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem5 17159
Description: Lemma 5 for funcsetcestrc 17164. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
Assertion
Ref Expression
funcsetcestrclem5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌𝑚 𝑋)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem5
StepHypRef Expression
1 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
21adantr 474 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
3 oveq12 6919 . . . . 5 ((𝑦 = 𝑌𝑥 = 𝑋) → (𝑦𝑚 𝑥) = (𝑌𝑚 𝑋))
43ancoms 452 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦𝑚 𝑥) = (𝑌𝑚 𝑋))
54reseq2d 5633 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ( I ↾ (𝑦𝑚 𝑥)) = ( I ↾ (𝑌𝑚 𝑋)))
65adantl 475 . 2 (((𝜑 ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ (𝑦𝑚 𝑥)) = ( I ↾ (𝑌𝑚 𝑋)))
7 simprl 787 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
8 simprr 789 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
9 ovexd 6944 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑌𝑚 𝑋) ∈ V)
109resiexd 6741 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → ( I ↾ (𝑌𝑚 𝑋)) ∈ V)
112, 6, 7, 8, 10ovmpt2d 7053 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌𝑚 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  Vcvv 3414  {csn 4399  cop 4405  cmpt 4954   I cid 5251  cres 5348  cfv 6127  (class class class)co 6910  cmpt2 6912  ωcom 7331  𝑚 cmap 8127  WUnicwun 9844  ndxcnx 16226  Basecbs 16229  SetCatcsetc 17084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915
This theorem is referenced by:  funcsetcestrclem6  17160  funcsetcestrclem7  17161  funcsetcestrclem8  17162  funcsetcestrclem9  17163
  Copyright terms: Public domain W3C validator