![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcsetcestrc 18154. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | β’ π = (SetCatβπ) |
funcsetcestrc.c | β’ πΆ = (Baseβπ) |
funcsetcestrc.f | β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) |
funcsetcestrc.u | β’ (π β π β WUni) |
funcsetcestrc.o | β’ (π β Ο β π) |
funcsetcestrc.g | β’ (π β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) |
Ref | Expression |
---|---|
funcsetcestrclem5 | β’ ((π β§ (π β πΆ β§ π β πΆ)) β (ππΊπ) = ( I βΎ (π βm π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.g | . . 3 β’ (π β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) | |
2 | 1 | adantr 479 | . 2 β’ ((π β§ (π β πΆ β§ π β πΆ)) β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) |
3 | oveq12 7426 | . . . . 5 β’ ((π¦ = π β§ π₯ = π) β (π¦ βm π₯) = (π βm π)) | |
4 | 3 | ancoms 457 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β (π¦ βm π₯) = (π βm π)) |
5 | 4 | reseq2d 5984 | . . 3 β’ ((π₯ = π β§ π¦ = π) β ( I βΎ (π¦ βm π₯)) = ( I βΎ (π βm π))) |
6 | 5 | adantl 480 | . 2 β’ (((π β§ (π β πΆ β§ π β πΆ)) β§ (π₯ = π β§ π¦ = π)) β ( I βΎ (π¦ βm π₯)) = ( I βΎ (π βm π))) |
7 | simprl 769 | . 2 β’ ((π β§ (π β πΆ β§ π β πΆ)) β π β πΆ) | |
8 | simprr 771 | . 2 β’ ((π β§ (π β πΆ β§ π β πΆ)) β π β πΆ) | |
9 | ovexd 7452 | . . 3 β’ ((π β§ (π β πΆ β§ π β πΆ)) β (π βm π) β V) | |
10 | 9 | resiexd 7226 | . 2 β’ ((π β§ (π β πΆ β§ π β πΆ)) β ( I βΎ (π βm π)) β V) |
11 | 2, 6, 7, 8, 10 | ovmpod 7571 | 1 β’ ((π β§ (π β πΆ β§ π β πΆ)) β (ππΊπ) = ( I βΎ (π βm π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 {csn 4629 β¨cop 4635 β¦ cmpt 5231 I cid 5574 βΎ cres 5679 βcfv 6547 (class class class)co 7417 β cmpo 7419 Οcom 7869 βm cmap 8843 WUnicwun 10723 ndxcnx 17161 Basecbs 17179 SetCatcsetc 18063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 |
This theorem is referenced by: funcsetcestrclem6 18150 funcsetcestrclem7 18151 funcsetcestrclem8 18152 funcsetcestrclem9 18153 |
Copyright terms: Public domain | W3C validator |