Step | Hyp | Ref
| Expression |
1 | | lmghm 20507 |
. . 3
β’ (πΉ β (π LMHom π) β πΉ β (π GrpHom π)) |
2 | | lmhmlmod2 20508 |
. . . 4
β’ (πΉ β (π LMHom π) β π β LMod) |
3 | | lmhmima.y |
. . . . 5
β’ π = (LSubSpβπ) |
4 | 3 | lsssubg 20433 |
. . . 4
β’ ((π β LMod β§ π β π) β π β (SubGrpβπ)) |
5 | 2, 4 | sylan 581 |
. . 3
β’ ((πΉ β (π LMHom π) β§ π β π) β π β (SubGrpβπ)) |
6 | | ghmpreima 19035 |
. . 3
β’ ((πΉ β (π GrpHom π) β§ π β (SubGrpβπ)) β (β‘πΉ β π) β (SubGrpβπ)) |
7 | 1, 5, 6 | syl2an2r 684 |
. 2
β’ ((πΉ β (π LMHom π) β§ π β π) β (β‘πΉ β π) β (SubGrpβπ)) |
8 | | lmhmlmod1 20509 |
. . . . . 6
β’ (πΉ β (π LMHom π) β π β LMod) |
9 | 8 | ad2antrr 725 |
. . . . 5
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β LMod) |
10 | | simprl 770 |
. . . . 5
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β (Baseβ(Scalarβπ))) |
11 | | cnvimass 6034 |
. . . . . . . 8
β’ (β‘πΉ β π) β dom πΉ |
12 | | eqid 2733 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
13 | | eqid 2733 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
14 | 12, 13 | lmhmf 20510 |
. . . . . . . . 9
β’ (πΉ β (π LMHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
15 | 14 | adantr 482 |
. . . . . . . 8
β’ ((πΉ β (π LMHom π) β§ π β π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
16 | 11, 15 | fssdm 6689 |
. . . . . . 7
β’ ((πΉ β (π LMHom π) β§ π β π) β (β‘πΉ β π) β (Baseβπ)) |
17 | 16 | sselda 3945 |
. . . . . 6
β’ (((πΉ β (π LMHom π) β§ π β π) β§ π β (β‘πΉ β π)) β π β (Baseβπ)) |
18 | 17 | adantrl 715 |
. . . . 5
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β (Baseβπ)) |
19 | | eqid 2733 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
20 | | eqid 2733 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
21 | | eqid 2733 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
22 | 12, 19, 20, 21 | lmodvscl 20354 |
. . . . 5
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ π β (Baseβπ)) β (π( Β·π
βπ)π) β (Baseβπ)) |
23 | 9, 10, 18, 22 | syl3anc 1372 |
. . . 4
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β (π( Β·π
βπ)π) β (Baseβπ)) |
24 | | simpll 766 |
. . . . . 6
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β πΉ β (π LMHom π)) |
25 | | eqid 2733 |
. . . . . . 7
β’ (
Β·π βπ) = ( Β·π
βπ) |
26 | 19, 21, 12, 20, 25 | lmhmlin 20511 |
. . . . . 6
β’ ((πΉ β (π LMHom π) β§ π β (Baseβ(Scalarβπ)) β§ π β (Baseβπ)) β (πΉβ(π( Β·π
βπ)π)) = (π( Β·π
βπ)(πΉβπ))) |
27 | 24, 10, 18, 26 | syl3anc 1372 |
. . . . 5
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β (πΉβ(π( Β·π
βπ)π)) = (π( Β·π
βπ)(πΉβπ))) |
28 | 2 | ad2antrr 725 |
. . . . . 6
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β LMod) |
29 | | simplr 768 |
. . . . . 6
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β π) |
30 | | eqid 2733 |
. . . . . . . . . . . 12
β’
(Scalarβπ) =
(Scalarβπ) |
31 | 19, 30 | lmhmsca 20506 |
. . . . . . . . . . 11
β’ (πΉ β (π LMHom π) β (Scalarβπ) = (Scalarβπ)) |
32 | 31 | adantr 482 |
. . . . . . . . . 10
β’ ((πΉ β (π LMHom π) β§ π β π) β (Scalarβπ) = (Scalarβπ)) |
33 | 32 | fveq2d 6847 |
. . . . . . . . 9
β’ ((πΉ β (π LMHom π) β§ π β π) β (Baseβ(Scalarβπ)) =
(Baseβ(Scalarβπ))) |
34 | 33 | eleq2d 2820 |
. . . . . . . 8
β’ ((πΉ β (π LMHom π) β§ π β π) β (π β (Baseβ(Scalarβπ)) β π β (Baseβ(Scalarβπ)))) |
35 | 34 | biimpar 479 |
. . . . . . 7
β’ (((πΉ β (π LMHom π) β§ π β π) β§ π β (Baseβ(Scalarβπ))) β π β (Baseβ(Scalarβπ))) |
36 | 35 | adantrr 716 |
. . . . . 6
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β (Baseβ(Scalarβπ))) |
37 | 15 | ffund 6673 |
. . . . . . 7
β’ ((πΉ β (π LMHom π) β§ π β π) β Fun πΉ) |
38 | | simprr 772 |
. . . . . . 7
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β π β (β‘πΉ β π)) |
39 | | fvimacnvi 7003 |
. . . . . . 7
β’ ((Fun
πΉ β§ π β (β‘πΉ β π)) β (πΉβπ) β π) |
40 | 37, 38, 39 | syl2an2r 684 |
. . . . . 6
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β (πΉβπ) β π) |
41 | | eqid 2733 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
42 | 30, 25, 41, 3 | lssvscl 20431 |
. . . . . 6
β’ (((π β LMod β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ (πΉβπ) β π)) β (π( Β·π
βπ)(πΉβπ)) β π) |
43 | 28, 29, 36, 40, 42 | syl22anc 838 |
. . . . 5
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β (π( Β·π
βπ)(πΉβπ)) β π) |
44 | 27, 43 | eqeltrd 2834 |
. . . 4
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β (πΉβ(π( Β·π
βπ)π)) β π) |
45 | | ffn 6669 |
. . . . . 6
β’ (πΉ:(Baseβπ)βΆ(Baseβπ) β πΉ Fn (Baseβπ)) |
46 | | elpreima 7009 |
. . . . . 6
β’ (πΉ Fn (Baseβπ) β ((π( Β·π
βπ)π) β (β‘πΉ β π) β ((π( Β·π
βπ)π) β (Baseβπ) β§ (πΉβ(π( Β·π
βπ)π)) β π))) |
47 | 15, 45, 46 | 3syl 18 |
. . . . 5
β’ ((πΉ β (π LMHom π) β§ π β π) β ((π( Β·π
βπ)π) β (β‘πΉ β π) β ((π( Β·π
βπ)π) β (Baseβπ) β§ (πΉβ(π( Β·π
βπ)π)) β π))) |
48 | 47 | adantr 482 |
. . . 4
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β ((π( Β·π
βπ)π) β (β‘πΉ β π) β ((π( Β·π
βπ)π) β (Baseβπ) β§ (πΉβ(π( Β·π
βπ)π)) β π))) |
49 | 23, 44, 48 | mpbir2and 712 |
. . 3
β’ (((πΉ β (π LMHom π) β§ π β π) β§ (π β (Baseβ(Scalarβπ)) β§ π β (β‘πΉ β π))) β (π( Β·π
βπ)π) β (β‘πΉ β π)) |
50 | 49 | ralrimivva 3194 |
. 2
β’ ((πΉ β (π LMHom π) β§ π β π) β βπ β (Baseβ(Scalarβπ))βπ β (β‘πΉ β π)(π( Β·π
βπ)π) β (β‘πΉ β π)) |
51 | 8 | adantr 482 |
. . 3
β’ ((πΉ β (π LMHom π) β§ π β π) β π β LMod) |
52 | | lmhmima.x |
. . . 4
β’ π = (LSubSpβπ) |
53 | 19, 21, 12, 20, 52 | islss4 20438 |
. . 3
β’ (π β LMod β ((β‘πΉ β π) β π β ((β‘πΉ β π) β (SubGrpβπ) β§ βπ β (Baseβ(Scalarβπ))βπ β (β‘πΉ β π)(π( Β·π
βπ)π) β (β‘πΉ β π)))) |
54 | 51, 53 | syl 17 |
. 2
β’ ((πΉ β (π LMHom π) β§ π β π) β ((β‘πΉ β π) β π β ((β‘πΉ β π) β (SubGrpβπ) β§ βπ β (Baseβ(Scalarβπ))βπ β (β‘πΉ β π)(π( Β·π
βπ)π) β (β‘πΉ β π)))) |
55 | 7, 50, 54 | mpbir2and 712 |
1
β’ ((πΉ β (π LMHom π) β§ π β π) β (β‘πΉ β π) β π) |