MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpreima Structured version   Visualization version   GIF version

Theorem lmhmpreima 20952
Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x 𝑋 = (LSubSp‘𝑆)
lmhmima.y 𝑌 = (LSubSp‘𝑇)
Assertion
Ref Expression
lmhmpreima ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ∈ 𝑋)

Proof of Theorem lmhmpreima
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 20935 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmlmod2 20936 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
3 lmhmima.y . . . . 5 𝑌 = (LSubSp‘𝑇)
43lsssubg 20860 . . . 4 ((𝑇 ∈ LMod ∧ 𝑈𝑌) → 𝑈 ∈ (SubGrp‘𝑇))
52, 4sylan 580 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → 𝑈 ∈ (SubGrp‘𝑇))
6 ghmpreima 19117 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑇)) → (𝐹𝑈) ∈ (SubGrp‘𝑆))
71, 5, 6syl2an2r 685 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ∈ (SubGrp‘𝑆))
8 lmhmlmod1 20937 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
98ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑆 ∈ LMod)
10 simprl 770 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
11 cnvimass 6033 . . . . . . . 8 (𝐹𝑈) ⊆ dom 𝐹
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2729 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
1412, 13lmhmf 20938 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1514adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1611, 15fssdm 6671 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ⊆ (Base‘𝑆))
1716sselda 3935 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ 𝑏 ∈ (𝐹𝑈)) → 𝑏 ∈ (Base‘𝑆))
1817adantrl 716 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑏 ∈ (Base‘𝑆))
19 eqid 2729 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
20 eqid 2729 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
21 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
2212, 19, 20, 21lmodvscl 20781 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆))
239, 10, 18, 22syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆))
24 simpll 766 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
25 eqid 2729 . . . . . . 7 ( ·𝑠𝑇) = ( ·𝑠𝑇)
2619, 21, 12, 20, 25lmhmlin 20939 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
2724, 10, 18, 26syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
282ad2antrr 726 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑇 ∈ LMod)
29 simplr 768 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑈𝑌)
30 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑇) = (Scalar‘𝑇)
3119, 30lmhmsca 20934 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
3231adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (Scalar‘𝑇) = (Scalar‘𝑆))
3332fveq2d 6826 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
3433eleq2d 2814 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆))))
3534biimpar 477 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆))) → 𝑎 ∈ (Base‘(Scalar‘𝑇)))
3635adantrr 717 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑎 ∈ (Base‘(Scalar‘𝑇)))
3715ffund 6656 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → Fun 𝐹)
38 simprr 772 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑏 ∈ (𝐹𝑈))
39 fvimacnvi 6986 . . . . . . 7 ((Fun 𝐹𝑏 ∈ (𝐹𝑈)) → (𝐹𝑏) ∈ 𝑈)
4037, 38, 39syl2an2r 685 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝐹𝑏) ∈ 𝑈)
41 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4230, 25, 41, 3lssvscl 20858 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝑏) ∈ 𝑈)) → (𝑎( ·𝑠𝑇)(𝐹𝑏)) ∈ 𝑈)
4328, 29, 36, 40, 42syl22anc 838 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑇)(𝐹𝑏)) ∈ 𝑈)
4427, 43eqeltrd 2828 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)
45 ffn 6652 . . . . . 6 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
46 elpreima 6992 . . . . . 6 (𝐹 Fn (Base‘𝑆) → ((𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈) ↔ ((𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)))
4715, 45, 463syl 18 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → ((𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈) ↔ ((𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)))
4847adantr 480 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → ((𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈) ↔ ((𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)))
4923, 44, 48mpbir2and 713 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))
5049ralrimivva 3172 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))
518adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → 𝑆 ∈ LMod)
52 lmhmima.x . . . 4 𝑋 = (LSubSp‘𝑆)
5319, 21, 12, 20, 52islss4 20865 . . 3 (𝑆 ∈ LMod → ((𝐹𝑈) ∈ 𝑋 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑆) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))))
5451, 53syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → ((𝐹𝑈) ∈ 𝑋 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑆) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))))
557, 50, 54mpbir2and 713 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ccnv 5618  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  SubGrpcsubg 18999   GrpHom cghm 19091  LModclmod 20763  LSubSpclss 20834   LMHom clmhm 20923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lss 20835  df-lmhm 20926
This theorem is referenced by:  lmhmlsp  20953  lmhmkerlss  20955  lnmepi  43062
  Copyright terms: Public domain W3C validator