Step | Hyp | Ref
| Expression |
1 | | lmghm 20293 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
2 | | lmhmlmod2 20294 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
3 | | lmhmima.y |
. . . . 5
⊢ 𝑌 = (LSubSp‘𝑇) |
4 | 3 | lsssubg 20219 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ 𝑈 ∈ 𝑌) → 𝑈 ∈ (SubGrp‘𝑇)) |
5 | 2, 4 | sylan 580 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → 𝑈 ∈ (SubGrp‘𝑇)) |
6 | | ghmpreima 18856 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑈) ∈ (SubGrp‘𝑆)) |
7 | 1, 5, 6 | syl2an2r 682 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (◡𝐹 “ 𝑈) ∈ (SubGrp‘𝑆)) |
8 | | lmhmlmod1 20295 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
9 | 8 | ad2antrr 723 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑆 ∈ LMod) |
10 | | simprl 768 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑎 ∈ (Base‘(Scalar‘𝑆))) |
11 | | cnvimass 5989 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑈) ⊆ dom 𝐹 |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑇) =
(Base‘𝑇) |
14 | 12, 13 | lmhmf 20296 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
15 | 14 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
16 | 11, 15 | fssdm 6620 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (◡𝐹 “ 𝑈) ⊆ (Base‘𝑆)) |
17 | 16 | sselda 3921 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈)) → 𝑏 ∈ (Base‘𝑆)) |
18 | 17 | adantrl 713 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑏 ∈ (Base‘𝑆)) |
19 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
20 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
21 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
22 | 12, 19, 20, 21 | lmodvscl 20140 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑎 ∈
(Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎( ·𝑠
‘𝑆)𝑏) ∈ (Base‘𝑆)) |
23 | 9, 10, 18, 22 | syl3anc 1370 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → (𝑎( ·𝑠
‘𝑆)𝑏) ∈ (Base‘𝑆)) |
24 | | simpll 764 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
25 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
26 | 19, 21, 12, 20, 25 | lmhmlin 20297 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑏)) = (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑏))) |
27 | 24, 10, 18, 26 | syl3anc 1370 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑏)) = (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑏))) |
28 | 2 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑇 ∈ LMod) |
29 | | simplr 766 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑈 ∈ 𝑌) |
30 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
31 | 19, 30 | lmhmsca 20292 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
32 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
33 | 32 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (Base‘(Scalar‘𝑇)) =
(Base‘(Scalar‘𝑆))) |
34 | 33 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆)))) |
35 | 34 | biimpar 478 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆))) → 𝑎 ∈ (Base‘(Scalar‘𝑇))) |
36 | 35 | adantrr 714 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑎 ∈ (Base‘(Scalar‘𝑇))) |
37 | 15 | ffund 6604 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → Fun 𝐹) |
38 | | simprr 770 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → 𝑏 ∈ (◡𝐹 “ 𝑈)) |
39 | | fvimacnvi 6929 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑏 ∈ (◡𝐹 “ 𝑈)) → (𝐹‘𝑏) ∈ 𝑈) |
40 | 37, 38, 39 | syl2an2r 682 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → (𝐹‘𝑏) ∈ 𝑈) |
41 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
42 | 30, 25, 41, 3 | lssvscl 20217 |
. . . . . 6
⊢ (((𝑇 ∈ LMod ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹‘𝑏) ∈ 𝑈)) → (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑏)) ∈ 𝑈) |
43 | 28, 29, 36, 40, 42 | syl22anc 836 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑏)) ∈ 𝑈) |
44 | 27, 43 | eqeltrd 2839 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑏)) ∈ 𝑈) |
45 | | ffn 6600 |
. . . . . 6
⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆)) |
46 | | elpreima 6935 |
. . . . . 6
⊢ (𝐹 Fn (Base‘𝑆) → ((𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈) ↔ ((𝑎( ·𝑠
‘𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑏)) ∈ 𝑈))) |
47 | 15, 45, 46 | 3syl 18 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → ((𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈) ↔ ((𝑎( ·𝑠
‘𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑏)) ∈ 𝑈))) |
48 | 47 | adantr 481 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → ((𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈) ↔ ((𝑎( ·𝑠
‘𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑏)) ∈ 𝑈))) |
49 | 23, 44, 48 | mpbir2and 710 |
. . 3
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (◡𝐹 “ 𝑈))) → (𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈)) |
50 | 49 | ralrimivva 3123 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (◡𝐹 “ 𝑈)(𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈)) |
51 | 8 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → 𝑆 ∈ LMod) |
52 | | lmhmima.x |
. . . 4
⊢ 𝑋 = (LSubSp‘𝑆) |
53 | 19, 21, 12, 20, 52 | islss4 20224 |
. . 3
⊢ (𝑆 ∈ LMod → ((◡𝐹 “ 𝑈) ∈ 𝑋 ↔ ((◡𝐹 “ 𝑈) ∈ (SubGrp‘𝑆) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (◡𝐹 “ 𝑈)(𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈)))) |
54 | 51, 53 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → ((◡𝐹 “ 𝑈) ∈ 𝑋 ↔ ((◡𝐹 “ 𝑈) ∈ (SubGrp‘𝑆) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (◡𝐹 “ 𝑈)(𝑎( ·𝑠
‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑈)))) |
55 | 7, 50, 54 | mpbir2and 710 |
1
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑌) → (◡𝐹 “ 𝑈) ∈ 𝑋) |