MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpreima Structured version   Visualization version   GIF version

Theorem lmhmpreima 20310
Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x 𝑋 = (LSubSp‘𝑆)
lmhmima.y 𝑌 = (LSubSp‘𝑇)
Assertion
Ref Expression
lmhmpreima ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ∈ 𝑋)

Proof of Theorem lmhmpreima
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 20293 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmlmod2 20294 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
3 lmhmima.y . . . . 5 𝑌 = (LSubSp‘𝑇)
43lsssubg 20219 . . . 4 ((𝑇 ∈ LMod ∧ 𝑈𝑌) → 𝑈 ∈ (SubGrp‘𝑇))
52, 4sylan 580 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → 𝑈 ∈ (SubGrp‘𝑇))
6 ghmpreima 18856 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑇)) → (𝐹𝑈) ∈ (SubGrp‘𝑆))
71, 5, 6syl2an2r 682 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ∈ (SubGrp‘𝑆))
8 lmhmlmod1 20295 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
98ad2antrr 723 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑆 ∈ LMod)
10 simprl 768 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
11 cnvimass 5989 . . . . . . . 8 (𝐹𝑈) ⊆ dom 𝐹
12 eqid 2738 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2738 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
1412, 13lmhmf 20296 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1514adantr 481 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1611, 15fssdm 6620 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ⊆ (Base‘𝑆))
1716sselda 3921 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ 𝑏 ∈ (𝐹𝑈)) → 𝑏 ∈ (Base‘𝑆))
1817adantrl 713 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑏 ∈ (Base‘𝑆))
19 eqid 2738 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
20 eqid 2738 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
21 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
2212, 19, 20, 21lmodvscl 20140 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆))
239, 10, 18, 22syl3anc 1370 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆))
24 simpll 764 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
25 eqid 2738 . . . . . . 7 ( ·𝑠𝑇) = ( ·𝑠𝑇)
2619, 21, 12, 20, 25lmhmlin 20297 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
2724, 10, 18, 26syl3anc 1370 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
282ad2antrr 723 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑇 ∈ LMod)
29 simplr 766 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑈𝑌)
30 eqid 2738 . . . . . . . . . . . 12 (Scalar‘𝑇) = (Scalar‘𝑇)
3119, 30lmhmsca 20292 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
3231adantr 481 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (Scalar‘𝑇) = (Scalar‘𝑆))
3332fveq2d 6778 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
3433eleq2d 2824 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆))))
3534biimpar 478 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆))) → 𝑎 ∈ (Base‘(Scalar‘𝑇)))
3635adantrr 714 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑎 ∈ (Base‘(Scalar‘𝑇)))
3715ffund 6604 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → Fun 𝐹)
38 simprr 770 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → 𝑏 ∈ (𝐹𝑈))
39 fvimacnvi 6929 . . . . . . 7 ((Fun 𝐹𝑏 ∈ (𝐹𝑈)) → (𝐹𝑏) ∈ 𝑈)
4037, 38, 39syl2an2r 682 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝐹𝑏) ∈ 𝑈)
41 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4230, 25, 41, 3lssvscl 20217 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹𝑏) ∈ 𝑈)) → (𝑎( ·𝑠𝑇)(𝐹𝑏)) ∈ 𝑈)
4328, 29, 36, 40, 42syl22anc 836 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑇)(𝐹𝑏)) ∈ 𝑈)
4427, 43eqeltrd 2839 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)
45 ffn 6600 . . . . . 6 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
46 elpreima 6935 . . . . . 6 (𝐹 Fn (Base‘𝑆) → ((𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈) ↔ ((𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)))
4715, 45, 463syl 18 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → ((𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈) ↔ ((𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)))
4847adantr 481 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → ((𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈) ↔ ((𝑎( ·𝑠𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) ∈ 𝑈)))
4923, 44, 48mpbir2and 710 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))
5049ralrimivva 3123 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))
518adantr 481 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → 𝑆 ∈ LMod)
52 lmhmima.x . . . 4 𝑋 = (LSubSp‘𝑆)
5319, 21, 12, 20, 52islss4 20224 . . 3 (𝑆 ∈ LMod → ((𝐹𝑈) ∈ 𝑋 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑆) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))))
5451, 53syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → ((𝐹𝑈) ∈ 𝑋 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑆) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑆)𝑏) ∈ (𝐹𝑈))))
557, 50, 54mpbir2and 710 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑌) → (𝐹𝑈) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  ccnv 5588  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  SubGrpcsubg 18749   GrpHom cghm 18831  LModclmod 20123  LSubSpclss 20193   LMHom clmhm 20281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lmhm 20284
This theorem is referenced by:  lmhmlsp  20311  lmhmkerlss  20313  lnmepi  40910
  Copyright terms: Public domain W3C validator