MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapresaun Structured version   Visualization version   GIF version

Theorem elmapresaun 8909
Description: fresaun 6773 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
elmapresaun ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶m (𝐴𝐵)))

Proof of Theorem elmapresaun
StepHypRef Expression
1 elmapi 8878 . . 3 (𝐹 ∈ (𝐶m 𝐴) → 𝐹:𝐴𝐶)
2 elmapi 8878 . . 3 (𝐺 ∈ (𝐶m 𝐵) → 𝐺:𝐵𝐶)
3 id 22 . . 3 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 fresaun 6773 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl3an 1157 . 2 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
6 elmapex 8877 . . . . 5 (𝐹 ∈ (𝐶m 𝐴) → (𝐶 ∈ V ∧ 𝐴 ∈ V))
76simpld 493 . . . 4 (𝐹 ∈ (𝐶m 𝐴) → 𝐶 ∈ V)
873ad2ant1 1130 . . 3 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐶 ∈ V)
96simprd 494 . . . . 5 (𝐹 ∈ (𝐶m 𝐴) → 𝐴 ∈ V)
10 elmapex 8877 . . . . . 6 (𝐺 ∈ (𝐶m 𝐵) → (𝐶 ∈ V ∧ 𝐵 ∈ V))
1110simprd 494 . . . . 5 (𝐺 ∈ (𝐶m 𝐵) → 𝐵 ∈ V)
12 unexg 7757 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
139, 11, 12syl2an 594 . . . 4 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵)) → (𝐴𝐵) ∈ V)
14133adant3 1129 . . 3 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐴𝐵) ∈ V)
158, 14elmapd 8869 . 2 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ∈ (𝐶m (𝐴𝐵)) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
165, 15mpbird 256 1 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶m (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  cun 3945  cin 3946  cres 5684  wf 6550  (class class class)co 7424  m cmap 8855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-map 8857
This theorem is referenced by:  satfv1lem  35190  diophin  42429  eldioph4b  42468  diophren  42470
  Copyright terms: Public domain W3C validator