Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapresaun | Structured version Visualization version GIF version |
Description: fresaun 6645 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
elmapresaun | ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8637 | . . 3 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐹:𝐴⟶𝐶) | |
2 | elmapi 8637 | . . 3 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → 𝐺:𝐵⟶𝐶) | |
3 | id 22 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) | |
4 | fresaun 6645 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
5 | 1, 2, 3, 4 | syl3an 1159 | . 2 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
6 | elmapex 8636 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → (𝐶 ∈ V ∧ 𝐴 ∈ V)) | |
7 | 6 | simpld 495 | . . . 4 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐶 ∈ V) |
8 | 7 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐶 ∈ V) |
9 | 6 | simprd 496 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐴 ∈ V) |
10 | elmapex 8636 | . . . . . 6 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → (𝐶 ∈ V ∧ 𝐵 ∈ V)) | |
11 | 10 | simprd 496 | . . . . 5 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → 𝐵 ∈ V) |
12 | unexg 7599 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
13 | 9, 11, 12 | syl2an 596 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵)) → (𝐴 ∪ 𝐵) ∈ V) |
14 | 13 | 3adant3 1131 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐴 ∪ 𝐵) ∈ V) |
15 | 8, 14 | elmapd 8629 | . 2 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) |
16 | 5, 15 | mpbird 256 | 1 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ∩ cin 3886 ↾ cres 5591 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: satfv1lem 33324 diophin 40594 eldioph4b 40633 diophren 40635 |
Copyright terms: Public domain | W3C validator |