MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapresaun Structured version   Visualization version   GIF version

Theorem elmapresaun 8938
Description: fresaun 6792 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
elmapresaun ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶m (𝐴𝐵)))

Proof of Theorem elmapresaun
StepHypRef Expression
1 elmapi 8907 . . 3 (𝐹 ∈ (𝐶m 𝐴) → 𝐹:𝐴𝐶)
2 elmapi 8907 . . 3 (𝐺 ∈ (𝐶m 𝐵) → 𝐺:𝐵𝐶)
3 id 22 . . 3 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 fresaun 6792 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl3an 1160 . 2 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
6 elmapex 8906 . . . . 5 (𝐹 ∈ (𝐶m 𝐴) → (𝐶 ∈ V ∧ 𝐴 ∈ V))
76simpld 494 . . . 4 (𝐹 ∈ (𝐶m 𝐴) → 𝐶 ∈ V)
873ad2ant1 1133 . . 3 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐶 ∈ V)
96simprd 495 . . . . 5 (𝐹 ∈ (𝐶m 𝐴) → 𝐴 ∈ V)
10 elmapex 8906 . . . . . 6 (𝐺 ∈ (𝐶m 𝐵) → (𝐶 ∈ V ∧ 𝐵 ∈ V))
1110simprd 495 . . . . 5 (𝐺 ∈ (𝐶m 𝐵) → 𝐵 ∈ V)
12 unexg 7778 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
139, 11, 12syl2an 595 . . . 4 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵)) → (𝐴𝐵) ∈ V)
14133adant3 1132 . . 3 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐴𝐵) ∈ V)
158, 14elmapd 8898 . 2 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ∈ (𝐶m (𝐴𝐵)) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
165, 15mpbird 257 1 ((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶m (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  cres 5702  wf 6569  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  satfv1lem  35330  diophin  42728  eldioph4b  42767  diophren  42769
  Copyright terms: Public domain W3C validator