| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapresaun | Structured version Visualization version GIF version | ||
| Description: fresaun 6699 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| elmapresaun | ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8779 | . . 3 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐹:𝐴⟶𝐶) | |
| 2 | elmapi 8779 | . . 3 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → 𝐺:𝐵⟶𝐶) | |
| 3 | id 22 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) | |
| 4 | fresaun 6699 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| 6 | elmapex 8778 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → (𝐶 ∈ V ∧ 𝐴 ∈ V)) | |
| 7 | 6 | simpld 494 | . . . 4 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐶 ∈ V) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐶 ∈ V) |
| 9 | 6 | simprd 495 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐴 ∈ V) |
| 10 | elmapex 8778 | . . . . . 6 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → (𝐶 ∈ V ∧ 𝐵 ∈ V)) | |
| 11 | 10 | simprd 495 | . . . . 5 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → 𝐵 ∈ V) |
| 12 | unexg 7682 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
| 13 | 9, 11, 12 | syl2an 596 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵)) → (𝐴 ∪ 𝐵) ∈ V) |
| 14 | 13 | 3adant3 1132 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐴 ∪ 𝐵) ∈ V) |
| 15 | 8, 14 | elmapd 8770 | . 2 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) |
| 16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ∩ cin 3897 ↾ cres 5621 ⟶wf 6482 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: satfv1lem 35427 diophin 42889 eldioph4b 42928 diophren 42930 |
| Copyright terms: Public domain | W3C validator |