![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapresaun | Structured version Visualization version GIF version |
Description: fresaun 6714 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
elmapresaun | ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8790 | . . 3 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐹:𝐴⟶𝐶) | |
2 | elmapi 8790 | . . 3 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → 𝐺:𝐵⟶𝐶) | |
3 | id 22 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) | |
4 | fresaun 6714 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
5 | 1, 2, 3, 4 | syl3an 1161 | . 2 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
6 | elmapex 8789 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → (𝐶 ∈ V ∧ 𝐴 ∈ V)) | |
7 | 6 | simpld 496 | . . . 4 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐶 ∈ V) |
8 | 7 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐶 ∈ V) |
9 | 6 | simprd 497 | . . . . 5 ⊢ (𝐹 ∈ (𝐶 ↑m 𝐴) → 𝐴 ∈ V) |
10 | elmapex 8789 | . . . . . 6 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → (𝐶 ∈ V ∧ 𝐵 ∈ V)) | |
11 | 10 | simprd 497 | . . . . 5 ⊢ (𝐺 ∈ (𝐶 ↑m 𝐵) → 𝐵 ∈ V) |
12 | unexg 7684 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
13 | 9, 11, 12 | syl2an 597 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵)) → (𝐴 ∪ 𝐵) ∈ V) |
14 | 13 | 3adant3 1133 | . . 3 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐴 ∪ 𝐵) ∈ V) |
15 | 8, 14 | elmapd 8782 | . 2 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) |
16 | 5, 15 | mpbird 257 | 1 ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ∪ cun 3909 ∩ cin 3910 ↾ cres 5636 ⟶wf 6493 (class class class)co 7358 ↑m cmap 8768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-map 8770 |
This theorem is referenced by: satfv1lem 34013 diophin 41138 eldioph4b 41177 diophren 41179 |
Copyright terms: Public domain | W3C validator |