MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0e Structured version   Visualization version   GIF version

Theorem map0e 8900
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.)
Assertion
Ref Expression
map0e (𝐴𝑉 → (𝐴m ∅) = 1o)

Proof of Theorem map0e
StepHypRef Expression
1 mapdm0 8860 . 2 (𝐴𝑉 → (𝐴m ∅) = {∅})
2 df1o2 8493 . 2 1o = {∅}
31, 2eqtr4di 2786 1 (𝐴𝑉 → (𝐴m ∅) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  c0 4323  {csn 4629  (class class class)co 7420  1oc1o 8479  m cmap 8844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1o 8486  df-map 8846
This theorem is referenced by:  fseqenlem1  10047  infmap2  10241  pwcfsdom  10606  cfpwsdom  10607  mat0dimbas0  22367  mavmul0  22453  mavmul0g  22454  cramer0  22591  poimirlem28  37121  pwslnmlem0  42515  lincval0  47483  lco0  47495  linds0  47533
  Copyright terms: Public domain W3C validator