![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map0e | Structured version Visualization version GIF version |
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.) |
Ref | Expression |
---|---|
map0e | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdm0 8900 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = {∅}) | |
2 | df1o2 8529 | . 2 ⊢ 1o = {∅} | |
3 | 1, 2 | eqtr4di 2798 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∅c0 4352 {csn 4648 (class class class)co 7448 1oc1o 8515 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1o 8522 df-map 8886 |
This theorem is referenced by: fseqenlem1 10093 infmap2 10286 pwcfsdom 10652 cfpwsdom 10653 mat0dimbas0 22493 mavmul0 22579 mavmul0g 22580 cramer0 22717 poimirlem28 37608 pwslnmlem0 43048 lincval0 48144 lco0 48156 linds0 48194 |
Copyright terms: Public domain | W3C validator |