MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0e Structured version   Visualization version   GIF version

Theorem map0e 8816
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.)
Assertion
Ref Expression
map0e (𝐴𝑉 → (𝐴m ∅) = 1o)

Proof of Theorem map0e
StepHypRef Expression
1 mapdm0 8776 . 2 (𝐴𝑉 → (𝐴m ∅) = {∅})
2 df1o2 8402 . 2 1o = {∅}
31, 2eqtr4di 2782 1 (𝐴𝑉 → (𝐴m ∅) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4286  {csn 4579  (class class class)co 7353  1oc1o 8388  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1o 8395  df-map 8762
This theorem is referenced by:  fseqenlem1  9937  infmap2  10130  pwcfsdom  10496  cfpwsdom  10497  mat0dimbas0  22369  mavmul0  22455  mavmul0g  22456  cramer0  22593  poimirlem28  37630  pwslnmlem0  43067  lincval0  48404  lco0  48416  linds0  48454
  Copyright terms: Public domain W3C validator