![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map0e | Structured version Visualization version GIF version |
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.) |
Ref | Expression |
---|---|
map0e | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdm0 8832 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = {∅}) | |
2 | df1o2 8469 | . 2 ⊢ 1o = {∅} | |
3 | 1, 2 | eqtr4di 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ∅) = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4321 {csn 4627 (class class class)co 7405 1oc1o 8455 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1o 8462 df-map 8818 |
This theorem is referenced by: fseqenlem1 10015 infmap2 10209 pwcfsdom 10574 cfpwsdom 10575 mat0dimbas0 21959 mavmul0 22045 mavmul0g 22046 cramer0 22183 poimirlem28 36504 pwslnmlem0 41818 lincval0 47049 lco0 47061 linds0 47099 |
Copyright terms: Public domain | W3C validator |