MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0e Structured version   Visualization version   GIF version

Theorem map0e 8855
Description: Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.)
Assertion
Ref Expression
map0e (𝐴𝑉 → (𝐴m ∅) = 1o)

Proof of Theorem map0e
StepHypRef Expression
1 mapdm0 8815 . 2 (𝐴𝑉 → (𝐴m ∅) = {∅})
2 df1o2 8441 . 2 1o = {∅}
31, 2eqtr4di 2782 1 (𝐴𝑉 → (𝐴m ∅) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4296  {csn 4589  (class class class)co 7387  1oc1o 8427  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-map 8801
This theorem is referenced by:  fseqenlem1  9977  infmap2  10170  pwcfsdom  10536  cfpwsdom  10537  mat0dimbas0  22353  mavmul0  22439  mavmul0g  22440  cramer0  22577  poimirlem28  37642  pwslnmlem0  43080  lincval0  48404  lco0  48416  linds0  48454
  Copyright terms: Public domain W3C validator