![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinv11OLD | Structured version Visualization version GIF version |
Description: Obsolete version of grpinv11 19038 as of 8-Jul-2025. (Contributed by NM, 22-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpinv11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpinv11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpinv11OLD | ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . 5 ⊢ ((𝑁‘𝑋) = (𝑁‘𝑌) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) |
3 | grpinv11.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | grpinv11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | grpinvinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpinvinv.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
7 | 5, 6 | grpinvinv 19036 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
8 | 3, 4, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
10 | grpinv11.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 5, 6 | grpinvinv 19036 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
12 | 3, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
14 | 2, 9, 13 | 3eqtr3d 2783 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → 𝑋 = 𝑌) |
15 | 14 | ex 412 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) → 𝑋 = 𝑌)) |
16 | fveq2 6907 | . 2 ⊢ (𝑋 = 𝑌 → (𝑁‘𝑋) = (𝑁‘𝑌)) | |
17 | 15, 16 | impbid1 225 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Basecbs 17245 Grpcgrp 18964 invgcminusg 18965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |