| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinv11OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of grpinv11 18917 as of 8-Jul-2025. (Contributed by NM, 22-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpinv11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpinv11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpinv11OLD | ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ ((𝑁‘𝑋) = (𝑁‘𝑌) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) |
| 3 | grpinv11.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 4 | grpinv11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | grpinvinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | grpinvinv.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
| 7 | 5, 6 | grpinvinv 18915 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 8 | 3, 4, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 10 | grpinv11.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 11 | 5, 6 | grpinvinv 18915 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 12 | 3, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 14 | 2, 9, 13 | 3eqtr3d 2774 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → 𝑋 = 𝑌) |
| 15 | 14 | ex 412 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) → 𝑋 = 𝑌)) |
| 16 | fveq2 6822 | . 2 ⊢ (𝑋 = 𝑌 → (𝑁‘𝑋) = (𝑁‘𝑌)) | |
| 17 | 15, 16 | impbid1 225 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17117 Grpcgrp 18843 invgcminusg 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |