![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinv11OLD | Structured version Visualization version GIF version |
Description: Obsolete version of grpinv11 19047 as of 8-Jul-2025. (Contributed by NM, 22-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpinv11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpinv11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpinv11OLD | ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . 5 ⊢ ((𝑁‘𝑋) = (𝑁‘𝑌) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) |
3 | grpinv11.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | grpinv11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | grpinvinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpinvinv.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
7 | 5, 6 | grpinvinv 19045 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
8 | 3, 4, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
10 | grpinv11.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 5, 6 | grpinvinv 19045 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
12 | 3, 10, 11 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
14 | 2, 9, 13 | 3eqtr3d 2788 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → 𝑋 = 𝑌) |
15 | 14 | ex 412 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) → 𝑋 = 𝑌)) |
16 | fveq2 6920 | . 2 ⊢ (𝑋 = 𝑌 → (𝑁‘𝑋) = (𝑁‘𝑌)) | |
17 | 15, 16 | impbid1 225 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 Grpcgrp 18973 invgcminusg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |