MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11OLD Structured version   Visualization version   GIF version

Theorem grpinv11OLD 18905
Description: Obsolete version of grpinv11 18904 as of 8-Jul-2025. (Contributed by NM, 22-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11OLD (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11OLD
StepHypRef Expression
1 fveq2 6826 . . . . 5 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
21adantl 481 . . . 4 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
3 grpinv11.g . . . . . 6 (𝜑𝐺 ∈ Grp)
4 grpinv11.x . . . . . 6 (𝜑𝑋𝐵)
5 grpinvinv.b . . . . . . 7 𝐵 = (Base‘𝐺)
6 grpinvinv.n . . . . . . 7 𝑁 = (invg𝐺)
75, 6grpinvinv 18902 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
83, 4, 7syl2anc 584 . . . . 5 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → (𝑁‘(𝑁𝑋)) = 𝑋)
10 grpinv11.y . . . . . 6 (𝜑𝑌𝐵)
115, 6grpinvinv 18902 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
123, 10, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1312adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → (𝑁‘(𝑁𝑌)) = 𝑌)
142, 9, 133eqtr3d 2772 . . 3 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → 𝑋 = 𝑌)
1514ex 412 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
16 fveq2 6826 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1715, 16impbid1 225 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6486  Basecbs 17138  Grpcgrp 18830  invgcminusg 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator