MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11 Structured version   Visualization version   GIF version

Theorem grpinv11 18995
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 6881 . . 3 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
2 grpinv11.g . . . . 5 (𝜑𝐺 ∈ Grp)
3 grpinv11.x . . . . 5 (𝜑𝑋𝐵)
4 grpinvinv.b . . . . . 6 𝐵 = (Base‘𝐺)
5 grpinvinv.n . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvinv 18993 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
8 grpinv11.y . . . . 5 (𝜑𝑌𝐵)
94, 5grpinvinv 18993 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
102, 8, 9syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
117, 10eqeq12d 2752 . . 3 (𝜑 → ((𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)) ↔ 𝑋 = 𝑌))
121, 11imbitrid 244 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
13 fveq2 6881 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1412, 13impbid1 225 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6536  Basecbs 17233  Grpcgrp 18921  invgcminusg 18922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925
This theorem is referenced by:  eqg0subg  19184  gexdvds  19570  dchrisum0re  27481  mapdpglem30  41726
  Copyright terms: Public domain W3C validator