MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11 Structured version   Visualization version   GIF version

Theorem grpinv11 18644
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 6774 . . . . 5 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
21adantl 482 . . . 4 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
3 grpinv11.g . . . . . 6 (𝜑𝐺 ∈ Grp)
4 grpinv11.x . . . . . 6 (𝜑𝑋𝐵)
5 grpinvinv.b . . . . . . 7 𝐵 = (Base‘𝐺)
6 grpinvinv.n . . . . . . 7 𝑁 = (invg𝐺)
75, 6grpinvinv 18642 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
83, 4, 7syl2anc 584 . . . . 5 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
98adantr 481 . . . 4 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → (𝑁‘(𝑁𝑋)) = 𝑋)
10 grpinv11.y . . . . . 6 (𝜑𝑌𝐵)
115, 6grpinvinv 18642 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
123, 10, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1312adantr 481 . . . 4 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → (𝑁‘(𝑁𝑌)) = 𝑌)
142, 9, 133eqtr3d 2786 . . 3 ((𝜑 ∧ (𝑁𝑋) = (𝑁𝑌)) → 𝑋 = 𝑌)
1514ex 413 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
16 fveq2 6774 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1715, 16impbid1 224 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  Basecbs 16912  Grpcgrp 18577  invgcminusg 18578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581
This theorem is referenced by:  gexdvds  19189  dchrisum0re  26661  mapdpglem30  39716
  Copyright terms: Public domain W3C validator