![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinv11 | Structured version Visualization version GIF version |
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpinv11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpinv11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpinv11 | ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . . 5 ⊢ ((𝑁‘𝑋) = (𝑁‘𝑌) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) | |
2 | 1 | adantl 483 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) |
3 | grpinv11.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | grpinv11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | grpinvinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpinvinv.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
7 | 5, 6 | grpinvinv 18890 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
8 | 3, 4, 7 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
9 | 8 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
10 | grpinv11.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 5, 6 | grpinvinv 18890 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
12 | 3, 10, 11 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
13 | 12 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
14 | 2, 9, 13 | 3eqtr3d 2781 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → 𝑋 = 𝑌) |
15 | 14 | ex 414 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) → 𝑋 = 𝑌)) |
16 | fveq2 6892 | . 2 ⊢ (𝑋 = 𝑌 → (𝑁‘𝑋) = (𝑁‘𝑌)) | |
17 | 15, 16 | impbid1 224 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 Basecbs 17144 Grpcgrp 18819 invgcminusg 18820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 |
This theorem is referenced by: eqg0subg 19073 gexdvds 19452 dchrisum0re 27016 mapdpglem30 40573 |
Copyright terms: Public domain | W3C validator |