MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11 Structured version   Visualization version   GIF version

Theorem grpinv11 18912
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 6817 . . 3 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
2 grpinv11.g . . . . 5 (𝜑𝐺 ∈ Grp)
3 grpinv11.x . . . . 5 (𝜑𝑋𝐵)
4 grpinvinv.b . . . . . 6 𝐵 = (Base‘𝐺)
5 grpinvinv.n . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvinv 18910 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
8 grpinv11.y . . . . 5 (𝜑𝑌𝐵)
94, 5grpinvinv 18910 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
102, 8, 9syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
117, 10eqeq12d 2746 . . 3 (𝜑 → ((𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)) ↔ 𝑋 = 𝑌))
121, 11imbitrid 244 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
13 fveq2 6817 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1412, 13impbid1 225 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2110  cfv 6477  Basecbs 17112  Grpcgrp 18838  invgcminusg 18839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-riota 7298  df-ov 7344  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842
This theorem is referenced by:  eqg0subg  19101  gexdvds  19489  dchrisum0re  27444  mapdpglem30  41720
  Copyright terms: Public domain W3C validator