MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11 Structured version   Visualization version   GIF version

Theorem grpinv11 19047
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 6920 . . 3 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
2 grpinv11.g . . . . 5 (𝜑𝐺 ∈ Grp)
3 grpinv11.x . . . . 5 (𝜑𝑋𝐵)
4 grpinvinv.b . . . . . 6 𝐵 = (Base‘𝐺)
5 grpinvinv.n . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvinv 19045 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
72, 3, 6syl2anc 583 . . . 4 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
8 grpinv11.y . . . . 5 (𝜑𝑌𝐵)
94, 5grpinvinv 19045 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
102, 8, 9syl2anc 583 . . . 4 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
117, 10eqeq12d 2756 . . 3 (𝜑 → ((𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)) ↔ 𝑋 = 𝑌))
121, 11imbitrid 244 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
13 fveq2 6920 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1412, 13impbid1 225 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  Grpcgrp 18973  invgcminusg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977
This theorem is referenced by:  eqg0subg  19236  gexdvds  19626  dchrisum0re  27575  mapdpglem30  41659
  Copyright terms: Public domain W3C validator