Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpinv11 | Structured version Visualization version GIF version |
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpinv11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpinv11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpinv11 | ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6767 | . . . . 5 ⊢ ((𝑁‘𝑋) = (𝑁‘𝑌) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) |
3 | grpinv11.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
4 | grpinv11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | grpinvinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpinvinv.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐺) | |
7 | 5, 6 | grpinvinv 18630 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
8 | 3, 4, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
10 | grpinv11.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 5, 6 | grpinvinv 18630 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
12 | 3, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
14 | 2, 9, 13 | 3eqtr3d 2786 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘𝑋) = (𝑁‘𝑌)) → 𝑋 = 𝑌) |
15 | 14 | ex 413 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) → 𝑋 = 𝑌)) |
16 | fveq2 6767 | . 2 ⊢ (𝑋 = 𝑌 → (𝑁‘𝑋) = (𝑁‘𝑌)) | |
17 | 15, 16 | impbid1 224 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6427 Basecbs 16900 Grpcgrp 18565 invgcminusg 18566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-fv 6435 df-riota 7225 df-ov 7271 df-0g 17140 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-grp 18568 df-minusg 18569 |
This theorem is referenced by: gexdvds 19177 dchrisum0re 26649 mapdpglem30 39702 |
Copyright terms: Public domain | W3C validator |