MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11 Structured version   Visualization version   GIF version

Theorem grpinv11 18946
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 6861 . . 3 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
2 grpinv11.g . . . . 5 (𝜑𝐺 ∈ Grp)
3 grpinv11.x . . . . 5 (𝜑𝑋𝐵)
4 grpinvinv.b . . . . . 6 𝐵 = (Base‘𝐺)
5 grpinvinv.n . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvinv 18944 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
8 grpinv11.y . . . . 5 (𝜑𝑌𝐵)
94, 5grpinvinv 18944 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
102, 8, 9syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
117, 10eqeq12d 2746 . . 3 (𝜑 → ((𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)) ↔ 𝑋 = 𝑌))
121, 11imbitrid 244 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
13 fveq2 6861 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1412, 13impbid1 225 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6514  Basecbs 17186  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  eqg0subg  19135  gexdvds  19521  dchrisum0re  27431  mapdpglem30  41703
  Copyright terms: Public domain W3C validator