MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinv11 Structured version   Visualization version   GIF version

Theorem grpinv11 19025
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
grpinv11.g (𝜑𝐺 ∈ Grp)
grpinv11.x (𝜑𝑋𝐵)
grpinv11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpinv11 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 6906 . . 3 ((𝑁𝑋) = (𝑁𝑌) → (𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)))
2 grpinv11.g . . . . 5 (𝜑𝐺 ∈ Grp)
3 grpinv11.x . . . . 5 (𝜑𝑋𝐵)
4 grpinvinv.b . . . . . 6 𝐵 = (Base‘𝐺)
5 grpinvinv.n . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvinv 19023 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑋)) = 𝑋)
8 grpinv11.y . . . . 5 (𝜑𝑌𝐵)
94, 5grpinvinv 19023 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
102, 8, 9syl2anc 584 . . . 4 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
117, 10eqeq12d 2753 . . 3 (𝜑 → ((𝑁‘(𝑁𝑋)) = (𝑁‘(𝑁𝑌)) ↔ 𝑋 = 𝑌))
121, 11imbitrid 244 . 2 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) → 𝑋 = 𝑌))
13 fveq2 6906 . 2 (𝑋 = 𝑌 → (𝑁𝑋) = (𝑁𝑌))
1412, 13impbid1 225 1 (𝜑 → ((𝑁𝑋) = (𝑁𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cfv 6561  Basecbs 17247  Grpcgrp 18951  invgcminusg 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955
This theorem is referenced by:  eqg0subg  19214  gexdvds  19602  dchrisum0re  27557  mapdpglem30  41704
  Copyright terms: Public domain W3C validator