| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinv11 | Structured version Visualization version GIF version | ||
| Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.) (Proof shortened by SN, 8-Jul-2025.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinv11.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpinv11.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpinv11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpinv11 | ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ ((𝑁‘𝑋) = (𝑁‘𝑌) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌))) | |
| 2 | grpinv11.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 3 | grpinv11.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | grpinvinv.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpinvinv.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 4, 5 | grpinvinv 18944 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 7 | 2, 3, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 8 | grpinv11.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 4, 5 | grpinvinv 18944 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 10 | 2, 8, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 11 | 7, 10 | eqeq12d 2746 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑁‘𝑋)) = (𝑁‘(𝑁‘𝑌)) ↔ 𝑋 = 𝑌)) |
| 12 | 1, 11 | imbitrid 244 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) → 𝑋 = 𝑌)) |
| 13 | fveq2 6861 | . 2 ⊢ (𝑋 = 𝑌 → (𝑁‘𝑋) = (𝑁‘𝑌)) | |
| 14 | 12, 13 | impbid1 225 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑁‘𝑌) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Basecbs 17186 Grpcgrp 18872 invgcminusg 18873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 |
| This theorem is referenced by: eqg0subg 19135 gexdvds 19521 dchrisum0re 27431 mapdpglem30 41703 |
| Copyright terms: Public domain | W3C validator |