![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpplusf | Structured version Visualization version GIF version |
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
grpplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
grpplusf.2 | ⊢ 𝐹 = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
grpplusf | ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18868 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpplusf.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpplusf.2 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
4 | 2, 3 | mndplusf 18683 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 × cxp 5674 ⟶wf 6539 ‘cfv 6543 Basecbs 17151 +𝑓cplusf 18568 Mndcmnd 18665 Grpcgrp 18861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-plusf 18570 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |