MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpplusfo Structured version   Visualization version   GIF version

Theorem grpplusfo 18879
Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grpplusf.1 𝐵 = (Base‘𝐺)
grpplusf.2 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
grpplusfo (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem grpplusfo
StepHypRef Expression
1 grpmnd 18870 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpplusf.1 . . 3 𝐵 = (Base‘𝐺)
3 grpplusf.2 . . 3 𝐹 = (+𝑓𝐺)
42, 3mndpfo 18690 . 2 (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)–onto𝐵)
51, 4syl 17 1 (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   × cxp 5667  ontowfo 6535  cfv 6537  Basecbs 17153  +𝑓cplusf 18570  Mndcmnd 18667  Grpcgrp 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-0g 17396  df-plusf 18572  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866
This theorem is referenced by:  resgrpplusfrn  18880
  Copyright terms: Public domain W3C validator