MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpplusfo Structured version   Visualization version   GIF version

Theorem grpplusfo 18920
Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grpplusf.1 𝐵 = (Base‘𝐺)
grpplusf.2 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
grpplusfo (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem grpplusfo
StepHypRef Expression
1 grpmnd 18911 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpplusf.1 . . 3 𝐵 = (Base‘𝐺)
3 grpplusf.2 . . 3 𝐹 = (+𝑓𝐺)
42, 3mndpfo 18726 . 2 (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)–onto𝐵)
51, 4syl 17 1 (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   × cxp 5680  ontowfo 6551  cfv 6553  Basecbs 17189  +𝑓cplusf 18606  Mndcmnd 18703  Grpcgrp 18904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-0g 17432  df-plusf 18608  df-mgm 18609  df-sgrp 18688  df-mnd 18704  df-grp 18907
This theorem is referenced by:  resgrpplusfrn  18921
  Copyright terms: Public domain W3C validator