MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpplusfo Structured version   Visualization version   GIF version

Theorem grpplusfo 17916
Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grpplusf.1 𝐵 = (Base‘𝐺)
grpplusf.2 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
grpplusfo (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem grpplusfo
StepHypRef Expression
1 grpmnd 17910 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpplusf.1 . . 3 𝐵 = (Base‘𝐺)
3 grpplusf.2 . . 3 𝐹 = (+𝑓𝐺)
42, 3mndpfo 17794 . 2 (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)–onto𝐵)
51, 4syl 17 1 (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051   × cxp 5401  ontowfo 6183  cfv 6185  Basecbs 16337  +𝑓cplusf 17719  Mndcmnd 17774  Grpcgrp 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-fo 6191  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-0g 16569  df-plusf 17721  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-grp 17906
This theorem is referenced by:  resgrpplusfrn  17917
  Copyright terms: Public domain W3C validator