MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpplusfo Structured version   Visualization version   GIF version

Theorem grpplusfo 18872
Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grpplusf.1 𝐵 = (Base‘𝐺)
grpplusf.2 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
grpplusfo (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem grpplusfo
StepHypRef Expression
1 grpmnd 18863 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpplusf.1 . . 3 𝐵 = (Base‘𝐺)
3 grpplusf.2 . . 3 𝐹 = (+𝑓𝐺)
42, 3mndpfo 18675 . 2 (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)–onto𝐵)
51, 4syl 17 1 (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   × cxp 5619  ontowfo 6487  cfv 6489  Basecbs 17130  +𝑓cplusf 18555  Mndcmnd 18652  Grpcgrp 18856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-0g 17355  df-plusf 18557  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859
This theorem is referenced by:  resgrpplusfrn  18873
  Copyright terms: Public domain W3C validator