Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinvd Structured version   Visualization version   GIF version

Theorem grprinvd 17875
 Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprinvlem.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grprinvlem.o (𝜑𝑂𝐵)
grprinvlem.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grprinvlem.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grprinvlem.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
grprinvd.x ((𝜑𝜓) → 𝑋𝐵)
grprinvd.n ((𝜑𝜓) → 𝑁𝐵)
grprinvd.e ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)
Assertion
Ref Expression
grprinvd ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑦,𝑁,𝑧   𝑥, + ,𝑦,𝑧   𝑦,𝑋,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem grprinvd
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.c . 2 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
2 grprinvlem.o . 2 (𝜑𝑂𝐵)
3 grprinvlem.i . 2 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
4 grprinvlem.a . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
5 grprinvlem.n . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
613expb 1117 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
76caovclg 7325 . . . 4 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 + 𝑣) ∈ 𝐵)
87adantlr 714 . . 3 (((𝜑𝜓) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 + 𝑣) ∈ 𝐵)
9 grprinvd.x . . 3 ((𝜑𝜓) → 𝑋𝐵)
10 grprinvd.n . . 3 ((𝜑𝜓) → 𝑁𝐵)
118, 9, 10caovcld 7326 . 2 ((𝜑𝜓) → (𝑋 + 𝑁) ∈ 𝐵)
124caovassg 7331 . . . . 5 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
1312adantlr 714 . . . 4 (((𝜑𝜓) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
1413, 9, 10, 11caovassd 7332 . . 3 ((𝜑𝜓) → ((𝑋 + 𝑁) + (𝑋 + 𝑁)) = (𝑋 + (𝑁 + (𝑋 + 𝑁))))
15 grprinvd.e . . . . . 6 ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)
1615oveq1d 7155 . . . . 5 ((𝜑𝜓) → ((𝑁 + 𝑋) + 𝑁) = (𝑂 + 𝑁))
1713, 10, 9, 10caovassd 7332 . . . . 5 ((𝜑𝜓) → ((𝑁 + 𝑋) + 𝑁) = (𝑁 + (𝑋 + 𝑁)))
18 oveq2 7148 . . . . . . 7 (𝑦 = 𝑁 → (𝑂 + 𝑦) = (𝑂 + 𝑁))
19 id 22 . . . . . . 7 (𝑦 = 𝑁𝑦 = 𝑁)
2018, 19eqeq12d 2838 . . . . . 6 (𝑦 = 𝑁 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑁) = 𝑁))
213ralrimiva 3174 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥)
22 oveq2 7148 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦))
23 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
2422, 23eqeq12d 2838 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦))
2524cbvralvw 3424 . . . . . . . 8 (∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
2621, 25sylib 221 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
2726adantr 484 . . . . . 6 ((𝜑𝜓) → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
2820, 27, 10rspcdva 3600 . . . . 5 ((𝜑𝜓) → (𝑂 + 𝑁) = 𝑁)
2916, 17, 283eqtr3d 2865 . . . 4 ((𝜑𝜓) → (𝑁 + (𝑋 + 𝑁)) = 𝑁)
3029oveq2d 7156 . . 3 ((𝜑𝜓) → (𝑋 + (𝑁 + (𝑋 + 𝑁))) = (𝑋 + 𝑁))
3114, 30eqtrd 2857 . 2 ((𝜑𝜓) → ((𝑋 + 𝑁) + (𝑋 + 𝑁)) = (𝑋 + 𝑁))
321, 2, 3, 4, 5, 11, 31grprinvlem 17874 1 ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  ∀wral 3130  ∃wrex 3131  (class class class)co 7140 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-ral 3135  df-rex 3136  df-v 3471  df-un 3913  df-in 3915  df-ss 3925  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-iota 6293  df-fv 6342  df-ov 7143 This theorem is referenced by:  grpridd  17876  grprcan  18128  grprinv  18144
 Copyright terms: Public domain W3C validator