| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplinvd | Structured version Visualization version GIF version | ||
| Description: The left inverse of a group element. Deduction associated with grplinv 18928. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grplinvd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplinvd.p | ⊢ + = (+g‘𝐺) |
| grplinvd.u | ⊢ 0 = (0g‘𝐺) |
| grplinvd.n | ⊢ 𝑁 = (invg‘𝐺) |
| grplinvd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplinvd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grplinvd | ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplinvd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplinvd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grplinvd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplinvd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplinvd.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | grplinvd.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 7 | 3, 4, 5, 6 | grplinv 18928 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 8 | 1, 2, 7 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 invgcminusg 18873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 |
| This theorem is referenced by: xpsinv 18999 rngmneg2 20084 rloccring 33228 qsdrngilem 33472 ply1dg1rt 33555 grpcominv1 42503 |
| Copyright terms: Public domain | W3C validator |