| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplinvd | Structured version Visualization version GIF version | ||
| Description: The left inverse of a group element. Deduction associated with grplinv 18970. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grplinvd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplinvd.p | ⊢ + = (+g‘𝐺) |
| grplinvd.u | ⊢ 0 = (0g‘𝐺) |
| grplinvd.n | ⊢ 𝑁 = (invg‘𝐺) |
| grplinvd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplinvd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grplinvd | ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplinvd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplinvd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grplinvd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplinvd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplinvd.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | grplinvd.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 7 | 3, 4, 5, 6 | grplinv 18970 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 8 | 1, 2, 7 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Grpcgrp 18914 invgcminusg 18915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-riota 7360 df-ov 7406 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 |
| This theorem is referenced by: xpsinv 19041 rngmneg2 20126 rloccring 33211 qsdrngilem 33455 ply1dg1rt 33538 grpcominv1 42478 |
| Copyright terms: Public domain | W3C validator |