Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grplrinv | Structured version Visualization version GIF version |
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.) |
Ref | Expression |
---|---|
grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grplrinv.p | ⊢ + = (+g‘𝐺) |
grplrinv.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplrinv | ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2736 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | grpinvcl 18672 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
4 | oveq1 7314 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg‘𝐺)‘𝑥) + 𝑥)) | |
5 | 4 | eqeq1d 2738 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg‘𝐺)‘𝑥) + 𝑥) = 0 )) |
6 | oveq2 7315 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg‘𝐺)‘𝑥))) | |
7 | 6 | eqeq1d 2738 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
8 | 5, 7 | anbi12d 632 | . . . 4 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
9 | 8 | adantl 483 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 = ((invg‘𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
10 | grplrinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
11 | grplrinv.i | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
12 | 1, 10, 11, 2 | grplinv 18673 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥) + 𝑥) = 0 ) |
13 | 1, 10, 11, 2 | grprinv 18674 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ) |
14 | 12, 13 | jca 513 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
15 | 3, 9, 14 | rspcedvd 3568 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
16 | 15 | ralrimiva 3140 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 0gc0g 17195 Grpcgrp 18622 invgcminusg 18623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-riota 7264 df-ov 7310 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 |
This theorem is referenced by: grpidinv2 18679 |
Copyright terms: Public domain | W3C validator |