| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplrinv | Structured version Visualization version GIF version | ||
| Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplrinv.p | ⊢ + = (+g‘𝐺) |
| grplrinv.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplrinv | ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2736 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 19006 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 4 | oveq1 7439 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg‘𝐺)‘𝑥) + 𝑥)) | |
| 5 | 4 | eqeq1d 2738 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg‘𝐺)‘𝑥) + 𝑥) = 0 )) |
| 6 | oveq2 7440 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg‘𝐺)‘𝑥))) | |
| 7 | 6 | eqeq1d 2738 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
| 8 | 5, 7 | anbi12d 632 | . . . 4 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 = ((invg‘𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
| 10 | grplrinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 11 | grplrinv.i | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 12 | 1, 10, 11, 2 | grplinv 19008 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥) + 𝑥) = 0 ) |
| 13 | 1, 10, 11, 2 | grprinv 19009 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ) |
| 14 | 12, 13 | jca 511 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
| 15 | 3, 9, 14 | rspcedvd 3623 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| 16 | 15 | ralrimiva 3145 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 0gc0g 17485 Grpcgrp 18952 invgcminusg 18953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-riota 7389 df-ov 7435 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 |
| This theorem is referenced by: grpidinv2 19016 |
| Copyright terms: Public domain | W3C validator |