MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplrinv Structured version   Visualization version   GIF version

Theorem grplrinv 18917
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grplrinv (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝐺,𝑦   𝑦, +   𝑦, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)   0 (𝑥)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . 4 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18908 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
4 oveq1 7362 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg𝐺)‘𝑥) + 𝑥))
54eqeq1d 2735 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg𝐺)‘𝑥) + 𝑥) = 0 ))
6 oveq2 7363 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg𝐺)‘𝑥)))
76eqeq1d 2735 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
85, 7anbi12d 632 . . . 4 (𝑦 = ((invg𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
98adantl 481 . . 3 (((𝐺 ∈ Grp ∧ 𝑥𝐵) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
10 grplrinv.p . . . . 5 + = (+g𝐺)
11 grplrinv.i . . . . 5 0 = (0g𝐺)
121, 10, 11, 2grplinv 18910 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥) + 𝑥) = 0 )
131, 10, 11, 2grprinv 18911 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = 0 )
1412, 13jca 511 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
153, 9, 14rspcedvd 3575 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
1615ralrimiva 3125 1 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  0gc0g 17350  Grpcgrp 18854  invgcminusg 18855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-riota 7312  df-ov 7358  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858
This theorem is referenced by:  grpidinv2  18918
  Copyright terms: Public domain W3C validator