| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplrinv | Structured version Visualization version GIF version | ||
| Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplrinv.p | ⊢ + = (+g‘𝐺) |
| grplrinv.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplrinv | ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 18900 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 4 | oveq1 7353 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg‘𝐺)‘𝑥) + 𝑥)) | |
| 5 | 4 | eqeq1d 2733 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg‘𝐺)‘𝑥) + 𝑥) = 0 )) |
| 6 | oveq2 7354 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg‘𝐺)‘𝑥))) | |
| 7 | 6 | eqeq1d 2733 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
| 8 | 5, 7 | anbi12d 632 | . . . 4 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 = ((invg‘𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
| 10 | grplrinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 11 | grplrinv.i | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 12 | 1, 10, 11, 2 | grplinv 18902 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥) + 𝑥) = 0 ) |
| 13 | 1, 10, 11, 2 | grprinv 18903 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ) |
| 14 | 12, 13 | jca 511 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
| 15 | 3, 9, 14 | rspcedvd 3579 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| 16 | 15 | ralrimiva 3124 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 |
| This theorem is referenced by: grpidinv2 18910 |
| Copyright terms: Public domain | W3C validator |