MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplrinv Structured version   Visualization version   GIF version

Theorem grplrinv 18909
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grplrinv (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝐺,𝑦   𝑦, +   𝑦, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)   0 (𝑥)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2731 . . . 4 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18900 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
4 oveq1 7353 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg𝐺)‘𝑥) + 𝑥))
54eqeq1d 2733 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg𝐺)‘𝑥) + 𝑥) = 0 ))
6 oveq2 7354 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg𝐺)‘𝑥)))
76eqeq1d 2733 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
85, 7anbi12d 632 . . . 4 (𝑦 = ((invg𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
98adantl 481 . . 3 (((𝐺 ∈ Grp ∧ 𝑥𝐵) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
10 grplrinv.p . . . . 5 + = (+g𝐺)
11 grplrinv.i . . . . 5 0 = (0g𝐺)
121, 10, 11, 2grplinv 18902 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥) + 𝑥) = 0 )
131, 10, 11, 2grprinv 18903 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = 0 )
1412, 13jca 511 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
153, 9, 14rspcedvd 3579 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
1615ralrimiva 3124 1 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  grpidinv2  18910
  Copyright terms: Public domain W3C validator