![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplrinv | Structured version Visualization version GIF version |
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.) |
Ref | Expression |
---|---|
grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grplrinv.p | ⊢ + = (+g‘𝐺) |
grplrinv.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplrinv | ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2731 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | grpinvcl 18909 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
4 | oveq1 7419 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg‘𝐺)‘𝑥) + 𝑥)) | |
5 | 4 | eqeq1d 2733 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg‘𝐺)‘𝑥) + 𝑥) = 0 )) |
6 | oveq2 7420 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg‘𝐺)‘𝑥))) | |
7 | 6 | eqeq1d 2733 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
8 | 5, 7 | anbi12d 630 | . . . 4 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
9 | 8 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 = ((invg‘𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
10 | grplrinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
11 | grplrinv.i | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
12 | 1, 10, 11, 2 | grplinv 18911 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥) + 𝑥) = 0 ) |
13 | 1, 10, 11, 2 | grprinv 18912 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ) |
14 | 12, 13 | jca 511 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
15 | 3, 9, 14 | rspcedvd 3614 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
16 | 15 | ralrimiva 3145 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 0gc0g 17390 Grpcgrp 18856 invgcminusg 18857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7368 df-ov 7415 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 |
This theorem is referenced by: grpidinv2 18919 |
Copyright terms: Public domain | W3C validator |