MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplrinv Structured version   Visualization version   GIF version

Theorem grplrinv 18918
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grplrinv (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝐺,𝑦   𝑦, +   𝑦, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)   0 (𝑥)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2731 . . . 4 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18909 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
4 oveq1 7419 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg𝐺)‘𝑥) + 𝑥))
54eqeq1d 2733 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg𝐺)‘𝑥) + 𝑥) = 0 ))
6 oveq2 7420 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg𝐺)‘𝑥)))
76eqeq1d 2733 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
85, 7anbi12d 630 . . . 4 (𝑦 = ((invg𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
98adantl 481 . . 3 (((𝐺 ∈ Grp ∧ 𝑥𝐵) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
10 grplrinv.p . . . . 5 + = (+g𝐺)
11 grplrinv.i . . . . 5 0 = (0g𝐺)
121, 10, 11, 2grplinv 18911 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥) + 𝑥) = 0 )
131, 10, 11, 2grprinv 18912 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = 0 )
1412, 13jca 511 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
153, 9, 14rspcedvd 3614 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
1615ralrimiva 3145 1 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cfv 6543  (class class class)co 7412  Basecbs 17149  +gcplusg 17202  0gc0g 17390  Grpcgrp 18856  invgcminusg 18857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7368  df-ov 7415  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860
This theorem is referenced by:  grpidinv2  18919
  Copyright terms: Public domain W3C validator