Step | Hyp | Ref
| Expression |
1 | | df-grtri 47789 |
. . 3
⊢
GrTriangles = (𝑔
∈ V ↦ ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
2 | 1 | a1i 11 |
. 2
⊢ (𝐺 ∈ 𝑊 → GrTriangles = (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))})) |
3 | | fveq2 6920 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
4 | | grtri.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
5 | 3, 4 | eqtr4di 2798 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
6 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺)) |
7 | | grtri.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
8 | 6, 7 | eqtr4di 2798 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸) |
9 | 8 | csbeq1d 3925 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = ⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
10 | 5, 9 | csbeq12dv 3930 |
. . . 4
⊢ (𝑔 = 𝐺 → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = ⦋𝑉 / 𝑣⦌⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
11 | 10 | adantl 481 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = ⦋𝑉 / 𝑣⦌⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
12 | 4 | fvexi 6934 |
. . . 4
⊢ 𝑉 ∈ V |
13 | 7 | fvexi 6934 |
. . . 4
⊢ 𝐸 ∈ V |
14 | | pweq 4636 |
. . . . . 6
⊢ (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉) |
15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉) |
16 | | eleq2 2833 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ↔ {(𝑓‘0), (𝑓‘1)} ∈ 𝐸)) |
17 | | eleq2 2833 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ↔ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸)) |
18 | | eleq2 2833 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({(𝑓‘1), (𝑓‘2)} ∈ 𝑒 ↔ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) |
19 | 16, 17, 18 | 3anbi123d 1436 |
. . . . . . . 8
⊢ (𝑒 = 𝐸 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒) ↔ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) |
20 | 19 | anbi2d 629 |
. . . . . . 7
⊢ (𝑒 = 𝐸 → ((𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒)) ↔ (𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
21 | 20 | exbidv 1920 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
22 | 21 | adantl 481 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
23 | 15, 22 | rabeqbidv 3462 |
. . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
24 | 12, 13, 23 | csbie2 3963 |
. . 3
⊢
⦋𝑉 /
𝑣⦌⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} |
25 | 11, 24 | eqtrdi 2796 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
26 | | elex 3509 |
. 2
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
27 | 4 | pweqi 4638 |
. . . . 5
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝐺) |
28 | | fvex 6933 |
. . . . . 6
⊢
(Vtx‘𝐺) ∈
V |
29 | 28 | pwex 5398 |
. . . . 5
⊢ 𝒫
(Vtx‘𝐺) ∈
V |
30 | 27, 29 | eqeltri 2840 |
. . . 4
⊢ 𝒫
𝑉 ∈ V |
31 | 30 | rabex 5357 |
. . 3
⊢ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ∈ V |
32 | 31 | a1i 11 |
. 2
⊢ (𝐺 ∈ 𝑊 → {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ∈ V) |
33 | 2, 25, 26, 32 | fvmptd 7036 |
1
⊢ (𝐺 ∈ 𝑊 → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |