| Step | Hyp | Ref
| Expression |
| 1 | | df-grtri 47905 |
. . 3
⊢
GrTriangles = (𝑔
∈ V ↦ ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝐺 ∈ 𝑊 → GrTriangles = (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))})) |
| 3 | | fveq2 6906 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 4 | | grtri.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 5 | 3, 4 | eqtr4di 2795 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
| 6 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺)) |
| 7 | | grtri.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
| 8 | 6, 7 | eqtr4di 2795 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸) |
| 9 | 8 | csbeq1d 3903 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = ⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
| 10 | 5, 9 | csbeq12dv 3908 |
. . . 4
⊢ (𝑔 = 𝐺 → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = ⦋𝑉 / 𝑣⦌⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
| 11 | 10 | adantl 481 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = ⦋𝑉 / 𝑣⦌⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
| 12 | 4 | fvexi 6920 |
. . . 4
⊢ 𝑉 ∈ V |
| 13 | 7 | fvexi 6920 |
. . . 4
⊢ 𝐸 ∈ V |
| 14 | | pweq 4614 |
. . . . . 6
⊢ (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉) |
| 15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝒫 𝑣 = 𝒫 𝑉) |
| 16 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ↔ {(𝑓‘0), (𝑓‘1)} ∈ 𝐸)) |
| 17 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ↔ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸)) |
| 18 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ({(𝑓‘1), (𝑓‘2)} ∈ 𝑒 ↔ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) |
| 19 | 16, 17, 18 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑒 = 𝐸 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒) ↔ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) |
| 20 | 19 | anbi2d 630 |
. . . . . . 7
⊢ (𝑒 = 𝐸 → ((𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒)) ↔ (𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
| 21 | 20 | exbidv 1921 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
| 22 | 21 | adantl 481 |
. . . . 5
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
| 23 | 15, 22 | rabeqbidv 3455 |
. . . 4
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
| 24 | 12, 13, 23 | csbie2 3938 |
. . 3
⊢
⦋𝑉 /
𝑣⦌⦋𝐸 / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} |
| 25 | 11, 24 | eqtrdi 2793 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))} = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
| 26 | | elex 3501 |
. 2
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
| 27 | 4 | pweqi 4616 |
. . . . 5
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝐺) |
| 28 | | fvex 6919 |
. . . . . 6
⊢
(Vtx‘𝐺) ∈
V |
| 29 | 28 | pwex 5380 |
. . . . 5
⊢ 𝒫
(Vtx‘𝐺) ∈
V |
| 30 | 27, 29 | eqeltri 2837 |
. . . 4
⊢ 𝒫
𝑉 ∈ V |
| 31 | 30 | rabex 5339 |
. . 3
⊢ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ∈ V |
| 32 | 31 | a1i 11 |
. 2
⊢ (𝐺 ∈ 𝑊 → {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ∈ V) |
| 33 | 2, 25, 26, 32 | fvmptd 7023 |
1
⊢ (𝐺 ∈ 𝑊 → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |