| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elfvex 6944 | . . . . . 6
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → 𝐺 ∈ V) | 
| 2 |  | grtri.v | . . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) | 
| 3 |  | grtri.e | . . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) | 
| 4 | 2, 3 | grtri 47907 | . . . . . 6
⊢ (𝐺 ∈ V →
(GrTriangles‘𝐺) =
{𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) | 
| 5 | 1, 4 | syl 17 | . . . . 5
⊢ (𝑇 ∈ (GrTriangles‘𝐺) →
(GrTriangles‘𝐺) =
{𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) | 
| 6 | 5 | eleq2d 2827 | . . . 4
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})) | 
| 7 |  | f1oeq3 6838 | . . . . . . 7
⊢ (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto→𝑡 ↔ 𝑓:(0..^3)–1-1-onto→𝑇)) | 
| 8 | 7 | anbi1d 631 | . . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) | 
| 9 | 8 | exbidv 1921 | . . . . 5
⊢ (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) | 
| 10 | 9 | elrab 3692 | . . . 4
⊢ (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) | 
| 11 | 6, 10 | bitrdi 287 | . . 3
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))) | 
| 12 |  | ovexd 7466 | . . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (0..^3) ∈
V) | 
| 13 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → 𝑓:(0..^3)–1-1-onto→𝑇) | 
| 14 | 12, 13 | hasheqf1od 14392 | . . . . . . 7
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (♯‘(0..^3))
= (♯‘𝑇)) | 
| 15 |  | eqcom 2744 | . . . . . . . . 9
⊢
((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) =
(♯‘(0..^3))) | 
| 16 |  | 3nn0 12544 | . . . . . . . . . . 11
⊢ 3 ∈
ℕ0 | 
| 17 |  | hashfzo0 14469 | . . . . . . . . . . 11
⊢ (3 ∈
ℕ0 → (♯‘(0..^3)) = 3) | 
| 18 | 16, 17 | mp1i 13 | . . . . . . . . . 10
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (♯‘(0..^3))
= 3) | 
| 19 | 18 | eqeq2d 2748 | . . . . . . . . 9
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = (♯‘(0..^3))
↔ (♯‘𝑇) =
3)) | 
| 20 | 15, 19 | bitrid 283 | . . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) →
((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = 3)) | 
| 21 |  | hash3tpb 14534 | . . . . . . . . . . . 12
⊢ (𝑇 ∈ 𝒫 𝑉 → ((♯‘𝑇) = 3 ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 22 | 21 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = 3 ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 23 | 22 | biimpa 476 | . . . . . . . . . 10
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) | 
| 24 |  | elpwi 4607 | . . . . . . . . . . . . . 14
⊢ (𝑇 ∈ 𝒫 𝑉 → 𝑇 ⊆ 𝑉) | 
| 25 |  | ss2rexv 4055 | . . . . . . . . . . . . . . 15
⊢ (𝑇 ⊆ 𝑉 → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 26 |  | ssrexv 4053 | . . . . . . . . . . . . . . . . 17
⊢ (𝑇 ⊆ 𝑉 → (∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 27 | 26 | reximdv 3170 | . . . . . . . . . . . . . . . 16
⊢ (𝑇 ⊆ 𝑉 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 28 | 27 | reximdv 3170 | . . . . . . . . . . . . . . 15
⊢ (𝑇 ⊆ 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 29 | 25, 28 | syld 47 | . . . . . . . . . . . . . 14
⊢ (𝑇 ⊆ 𝑉 → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 30 | 24, 29 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝑇 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 31 | 30 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 32 | 31 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) | 
| 33 |  | simprr 773 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → 𝑇 = {𝑥, 𝑦, 𝑧}) | 
| 34 |  | simp-5r 786 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (♯‘𝑇) = 3) | 
| 35 |  | f1oeq3 6838 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto→𝑇 ↔ 𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})) | 
| 36 |  | grtriproplem 47906 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 37 | 36 | 2a1d 26 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 38 | 37 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 39 | 38 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))) | 
| 40 | 35, 39 | biimtrdi 253 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto→𝑇 → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))) | 
| 41 | 40 | adantld 490 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))) | 
| 42 | 41 | imp4c 423 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 43 | 42 | imp4c 423 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 44 | 43 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ((((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 45 | 44 | impcom 407 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 46 | 33, 34, 45 | 3jca 1129 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 47 | 46 | ex 412 | . . . . . . . . . . . . . . 15
⊢
((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) → (((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 48 | 47 | reximdva 3168 | . . . . . . . . . . . . . 14
⊢
(((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 49 | 48 | reximdvva 3207 | . . . . . . . . . . . . 13
⊢ ((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 50 | 49 | ex 412 | . . . . . . . . . . . 12
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 51 | 50 | com23 86 | . . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 52 | 32, 51 | syld 47 | . . . . . . . . . 10
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 53 | 23, 52 | mpd 15 | . . . . . . . . 9
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 54 | 53 | ex 412 | . . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 55 | 20, 54 | sylbid 240 | . . . . . . 7
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) →
((♯‘(0..^3)) = (♯‘𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) | 
| 56 | 14, 55 | mpd 15 | . . . . . 6
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 57 | 56 | expimpd 453 | . . . . 5
⊢ (𝑇 ∈ 𝒫 𝑉 → ((𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 58 | 57 | exlimdv 1933 | . . . 4
⊢ (𝑇 ∈ 𝒫 𝑉 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 59 | 58 | imp 406 | . . 3
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 60 | 11, 59 | biimtrdi 253 | . 2
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) | 
| 61 | 60 | pm2.43i 52 | 1
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |