Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtriprop Structured version   Visualization version   GIF version

Theorem grtriprop 47933
Description: The properties of a triangle. (Contributed by AV, 25-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
grtriprop (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝐸,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem grtriprop
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6878 . . . . . 6 (𝑇 ∈ (GrTriangles‘𝐺) → 𝐺 ∈ V)
2 grtri.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 grtri.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3grtri 47932 . . . . . 6 (𝐺 ∈ V → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
51, 4syl 17 . . . . 5 (𝑇 ∈ (GrTriangles‘𝐺) → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
65eleq2d 2814 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
7 f1oeq3 6772 . . . . . . 7 (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto𝑡𝑓:(0..^3)–1-1-onto𝑇))
87anbi1d 631 . . . . . 6 (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
98exbidv 1921 . . . . 5 (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
109elrab 3656 . . . 4 (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
116, 10bitrdi 287 . . 3 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
12 ovexd 7404 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (0..^3) ∈ V)
13 simpr 484 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → 𝑓:(0..^3)–1-1-onto𝑇)
1412, 13hasheqf1od 14294 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = (♯‘𝑇))
15 eqcom 2736 . . . . . . . . 9 ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = (♯‘(0..^3)))
16 3nn0 12436 . . . . . . . . . . 11 3 ∈ ℕ0
17 hashfzo0 14371 . . . . . . . . . . 11 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1816, 17mp1i 13 . . . . . . . . . 10 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = 3)
1918eqeq2d 2740 . . . . . . . . 9 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = (♯‘(0..^3)) ↔ (♯‘𝑇) = 3))
2015, 19bitrid 283 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = 3))
21 hash3tpb 14436 . . . . . . . . . . . 12 (𝑇 ∈ 𝒫 𝑉 → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2221adantr 480 . . . . . . . . . . 11 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2322biimpa 476 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))
24 elpwi 4566 . . . . . . . . . . . . . 14 (𝑇 ∈ 𝒫 𝑉𝑇𝑉)
25 ss2rexv 4015 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
26 ssrexv 4013 . . . . . . . . . . . . . . . . 17 (𝑇𝑉 → (∃𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2726reximdv 3148 . . . . . . . . . . . . . . . 16 (𝑇𝑉 → (∃𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2827reximdv 3148 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2925, 28syld 47 . . . . . . . . . . . . . 14 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3024, 29syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ 𝒫 𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3130adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3231adantr 480 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
33 simprr 772 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → 𝑇 = {𝑥, 𝑦, 𝑧})
34 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (♯‘𝑇) = 3)
35 f1oeq3 6772 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
36 grtriproplem 47931 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
37362a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
3837ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))
4035, 39biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇 → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4140adantld 490 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4241imp4c 423 . . . . . . . . . . . . . . . . . . . 20 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
4342imp4c 423 . . . . . . . . . . . . . . . . . . 19 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4443adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4544impcom 407 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
4633, 34, 453jca 1128 . . . . . . . . . . . . . . . 16 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4746ex 412 . . . . . . . . . . . . . . 15 ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4847reximdva 3146 . . . . . . . . . . . . . 14 (((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4948reximdvva 3183 . . . . . . . . . . . . 13 ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5049ex 412 . . . . . . . . . . . 12 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5150com23 86 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5232, 51syld 47 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5323, 52mpd 15 . . . . . . . . 9 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5453ex 412 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5520, 54sylbid 240 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5614, 55mpd 15 . . . . . 6 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5756expimpd 453 . . . . 5 (𝑇 ∈ 𝒫 𝑉 → ((𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5857exlimdv 1933 . . . 4 (𝑇 ∈ 𝒫 𝑉 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5958imp 406 . . 3 ((𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6011, 59biimtrdi 253 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
6160pm2.43i 52 1 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559  {cpr 4587  {ctp 4589  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  2c2 12217  3c3 12218  0cn0 12418  ..^cfzo 13591  chash 14271  Vtxcvtx 28976  Edgcedg 29027  GrTrianglescgrtri 47929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-3o 8413  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-grtri 47930
This theorem is referenced by:  grtrif1o  47934  isgrtri  47935  grtrissvtx  47936  grimgrtri  47941  grlimgrtri  47988
  Copyright terms: Public domain W3C validator