Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtriprop Structured version   Visualization version   GIF version

Theorem grtriprop 47792
Description: The properties of a triangle. (Contributed by AV, 25-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
grtriprop (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝐸,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem grtriprop
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6958 . . . . . 6 (𝑇 ∈ (GrTriangles‘𝐺) → 𝐺 ∈ V)
2 grtri.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 grtri.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3grtri 47791 . . . . . 6 (𝐺 ∈ V → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
51, 4syl 17 . . . . 5 (𝑇 ∈ (GrTriangles‘𝐺) → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
65eleq2d 2830 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
7 f1oeq3 6852 . . . . . . 7 (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto𝑡𝑓:(0..^3)–1-1-onto𝑇))
87anbi1d 630 . . . . . 6 (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
98exbidv 1920 . . . . 5 (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
109elrab 3708 . . . 4 (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
116, 10bitrdi 287 . . 3 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
12 ovexd 7483 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (0..^3) ∈ V)
13 simpr 484 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → 𝑓:(0..^3)–1-1-onto𝑇)
1412, 13hasheqf1od 14402 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = (♯‘𝑇))
15 eqcom 2747 . . . . . . . . 9 ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = (♯‘(0..^3)))
16 3nn0 12571 . . . . . . . . . . 11 3 ∈ ℕ0
17 hashfzo0 14479 . . . . . . . . . . 11 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1816, 17mp1i 13 . . . . . . . . . 10 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = 3)
1918eqeq2d 2751 . . . . . . . . 9 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = (♯‘(0..^3)) ↔ (♯‘𝑇) = 3))
2015, 19bitrid 283 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = 3))
21 hash3tpb 14544 . . . . . . . . . . . 12 (𝑇 ∈ 𝒫 𝑉 → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2221adantr 480 . . . . . . . . . . 11 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2322biimpa 476 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))
24 elpwi 4629 . . . . . . . . . . . . . 14 (𝑇 ∈ 𝒫 𝑉𝑇𝑉)
25 ss2rexv 4080 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
26 ssrexv 4078 . . . . . . . . . . . . . . . . 17 (𝑇𝑉 → (∃𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2726reximdv 3176 . . . . . . . . . . . . . . . 16 (𝑇𝑉 → (∃𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2827reximdv 3176 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2925, 28syld 47 . . . . . . . . . . . . . 14 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3024, 29syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ 𝒫 𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3130adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3231adantr 480 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
33 simprr 772 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → 𝑇 = {𝑥, 𝑦, 𝑧})
34 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (♯‘𝑇) = 3)
35 f1oeq3 6852 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
36 grtriproplem 47790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
37362a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
3837ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))
4035, 39biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇 → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4140adantld 490 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4241imp4c 423 . . . . . . . . . . . . . . . . . . . 20 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
4342imp4c 423 . . . . . . . . . . . . . . . . . . 19 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4443adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4544impcom 407 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
4633, 34, 453jca 1128 . . . . . . . . . . . . . . . 16 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4746ex 412 . . . . . . . . . . . . . . 15 ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4847reximdva 3174 . . . . . . . . . . . . . 14 (((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4948reximdvva 3213 . . . . . . . . . . . . 13 ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5049ex 412 . . . . . . . . . . . 12 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5150com23 86 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5232, 51syld 47 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5323, 52mpd 15 . . . . . . . . 9 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5453ex 412 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5520, 54sylbid 240 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5614, 55mpd 15 . . . . . 6 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5756expimpd 453 . . . . 5 (𝑇 ∈ 𝒫 𝑉 → ((𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5857exlimdv 1932 . . . 4 (𝑇 ∈ 𝒫 𝑉 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5958imp 406 . . 3 ((𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6011, 59biimtrdi 253 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
6160pm2.43i 52 1 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  {cpr 4650  {ctp 4652  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  2c2 12348  3c3 12349  0cn0 12553  ..^cfzo 13711  chash 14379  Vtxcvtx 29031  Edgcedg 29082  GrTrianglescgrtri 47788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-3o 8524  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-grtri 47789
This theorem is referenced by:  grtrif1o  47793  isgrtri  47794  grtrissvtx  47795  grimgrtri  47798  grlimgrtri  47820
  Copyright terms: Public domain W3C validator