Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtriprop Structured version   Visualization version   GIF version

Theorem grtriprop 47953
Description: The properties of a triangle. (Contributed by AV, 25-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
grtriprop (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝐸,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem grtriprop
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6914 . . . . . 6 (𝑇 ∈ (GrTriangles‘𝐺) → 𝐺 ∈ V)
2 grtri.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 grtri.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3grtri 47952 . . . . . 6 (𝐺 ∈ V → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
51, 4syl 17 . . . . 5 (𝑇 ∈ (GrTriangles‘𝐺) → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
65eleq2d 2820 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
7 f1oeq3 6808 . . . . . . 7 (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto𝑡𝑓:(0..^3)–1-1-onto𝑇))
87anbi1d 631 . . . . . 6 (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
98exbidv 1921 . . . . 5 (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
109elrab 3671 . . . 4 (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
116, 10bitrdi 287 . . 3 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
12 ovexd 7440 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (0..^3) ∈ V)
13 simpr 484 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → 𝑓:(0..^3)–1-1-onto𝑇)
1412, 13hasheqf1od 14371 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = (♯‘𝑇))
15 eqcom 2742 . . . . . . . . 9 ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = (♯‘(0..^3)))
16 3nn0 12519 . . . . . . . . . . 11 3 ∈ ℕ0
17 hashfzo0 14448 . . . . . . . . . . 11 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1816, 17mp1i 13 . . . . . . . . . 10 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = 3)
1918eqeq2d 2746 . . . . . . . . 9 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = (♯‘(0..^3)) ↔ (♯‘𝑇) = 3))
2015, 19bitrid 283 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = 3))
21 hash3tpb 14513 . . . . . . . . . . . 12 (𝑇 ∈ 𝒫 𝑉 → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2221adantr 480 . . . . . . . . . . 11 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2322biimpa 476 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))
24 elpwi 4582 . . . . . . . . . . . . . 14 (𝑇 ∈ 𝒫 𝑉𝑇𝑉)
25 ss2rexv 4030 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
26 ssrexv 4028 . . . . . . . . . . . . . . . . 17 (𝑇𝑉 → (∃𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2726reximdv 3155 . . . . . . . . . . . . . . . 16 (𝑇𝑉 → (∃𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2827reximdv 3155 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2925, 28syld 47 . . . . . . . . . . . . . 14 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3024, 29syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ 𝒫 𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3130adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3231adantr 480 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
33 simprr 772 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → 𝑇 = {𝑥, 𝑦, 𝑧})
34 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (♯‘𝑇) = 3)
35 f1oeq3 6808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
36 grtriproplem 47951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
37362a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
3837ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))
4035, 39biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇 → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4140adantld 490 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4241imp4c 423 . . . . . . . . . . . . . . . . . . . 20 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
4342imp4c 423 . . . . . . . . . . . . . . . . . . 19 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4443adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4544impcom 407 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
4633, 34, 453jca 1128 . . . . . . . . . . . . . . . 16 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4746ex 412 . . . . . . . . . . . . . . 15 ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4847reximdva 3153 . . . . . . . . . . . . . 14 (((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4948reximdvva 3192 . . . . . . . . . . . . 13 ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5049ex 412 . . . . . . . . . . . 12 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5150com23 86 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5232, 51syld 47 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5323, 52mpd 15 . . . . . . . . 9 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5453ex 412 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5520, 54sylbid 240 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5614, 55mpd 15 . . . . . 6 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5756expimpd 453 . . . . 5 (𝑇 ∈ 𝒫 𝑉 → ((𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5857exlimdv 1933 . . . 4 (𝑇 ∈ 𝒫 𝑉 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5958imp 406 . . 3 ((𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6011, 59biimtrdi 253 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
6160pm2.43i 52 1 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575  {cpr 4603  {ctp 4605  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  2c2 12295  3c3 12296  0cn0 12501  ..^cfzo 13671  chash 14348  Vtxcvtx 28975  Edgcedg 29026  GrTrianglescgrtri 47949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-3o 8482  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-grtri 47950
This theorem is referenced by:  grtrif1o  47954  isgrtri  47955  grtrissvtx  47956  grimgrtri  47961  grlimgrtri  48008
  Copyright terms: Public domain W3C validator