| Step | Hyp | Ref
| Expression |
| 1 | | elfvex 6914 |
. . . . . 6
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → 𝐺 ∈ V) |
| 2 | | grtri.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | | grtri.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
| 4 | 2, 3 | grtri 47952 |
. . . . . 6
⊢ (𝐺 ∈ V →
(GrTriangles‘𝐺) =
{𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
| 5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝑇 ∈ (GrTriangles‘𝐺) →
(GrTriangles‘𝐺) =
{𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
| 6 | 5 | eleq2d 2820 |
. . . 4
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})) |
| 7 | | f1oeq3 6808 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto→𝑡 ↔ 𝑓:(0..^3)–1-1-onto→𝑇)) |
| 8 | 7 | anbi1d 631 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
| 9 | 8 | exbidv 1921 |
. . . . 5
⊢ (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
| 10 | 9 | elrab 3671 |
. . . 4
⊢ (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
| 11 | 6, 10 | bitrdi 287 |
. . 3
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))) |
| 12 | | ovexd 7440 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (0..^3) ∈
V) |
| 13 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → 𝑓:(0..^3)–1-1-onto→𝑇) |
| 14 | 12, 13 | hasheqf1od 14371 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (♯‘(0..^3))
= (♯‘𝑇)) |
| 15 | | eqcom 2742 |
. . . . . . . . 9
⊢
((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) =
(♯‘(0..^3))) |
| 16 | | 3nn0 12519 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ0 |
| 17 | | hashfzo0 14448 |
. . . . . . . . . . 11
⊢ (3 ∈
ℕ0 → (♯‘(0..^3)) = 3) |
| 18 | 16, 17 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (♯‘(0..^3))
= 3) |
| 19 | 18 | eqeq2d 2746 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = (♯‘(0..^3))
↔ (♯‘𝑇) =
3)) |
| 20 | 15, 19 | bitrid 283 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) →
((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = 3)) |
| 21 | | hash3tpb 14513 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ 𝒫 𝑉 → ((♯‘𝑇) = 3 ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = 3 ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 23 | 22 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) |
| 24 | | elpwi 4582 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ 𝒫 𝑉 → 𝑇 ⊆ 𝑉) |
| 25 | | ss2rexv 4030 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ⊆ 𝑉 → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 26 | | ssrexv 4028 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑇 ⊆ 𝑉 → (∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 27 | 26 | reximdv 3155 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ⊆ 𝑉 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 28 | 27 | reximdv 3155 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ⊆ 𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 29 | 25, 28 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ⊆ 𝑉 → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 30 | 24, 29 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ 𝒫 𝑉 → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))) |
| 33 | | simprr 772 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → 𝑇 = {𝑥, 𝑦, 𝑧}) |
| 34 | | simp-5r 785 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (♯‘𝑇) = 3) |
| 35 | | f1oeq3 6808 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto→𝑇 ↔ 𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})) |
| 36 | | grtriproplem 47951 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
| 37 | 36 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 38 | 37 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 39 | 38 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))) |
| 40 | 35, 39 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto→𝑇 → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))) |
| 41 | 40 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))) |
| 42 | 41 | imp4c 423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑧 ∈ 𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 43 | 42 | imp4c 423 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ((((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 45 | 44 | impcom 407 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
| 46 | 33, 34, 45 | 3jca 1128 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) ∧ ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 47 | 46 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ 𝑧 ∈ 𝑉) → (((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 48 | 47 | reximdva 3153 |
. . . . . . . . . . . . . 14
⊢
(((((𝑇 ∈
𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 49 | 48 | reximdvva 3192 |
. . . . . . . . . . . . 13
⊢ ((((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 50 | 49 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 51 | 50 | com23 86 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 52 | 32, 51 | syld 47 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑇 ((𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 53 | 23, 52 | mpd 15 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 54 | 53 | ex 412 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 55 | 20, 54 | sylbid 240 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) →
((♯‘(0..^3)) = (♯‘𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))) |
| 56 | 14, 55 | mpd 15 |
. . . . . 6
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ 𝑓:(0..^3)–1-1-onto→𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 57 | 56 | expimpd 453 |
. . . . 5
⊢ (𝑇 ∈ 𝒫 𝑉 → ((𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 58 | 57 | exlimdv 1933 |
. . . 4
⊢ (𝑇 ∈ 𝒫 𝑉 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 59 | 58 | imp 406 |
. . 3
⊢ ((𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
| 60 | 11, 59 | biimtrdi 253 |
. 2
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))) |
| 61 | 60 | pm2.43i 52 |
1
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |