Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtriprop Structured version   Visualization version   GIF version

Theorem grtriprop 48040
Description: The properties of a triangle. (Contributed by AV, 25-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
grtriprop (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝐸,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem grtriprop
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6857 . . . . . 6 (𝑇 ∈ (GrTriangles‘𝐺) → 𝐺 ∈ V)
2 grtri.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 grtri.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3grtri 48039 . . . . . 6 (𝐺 ∈ V → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
51, 4syl 17 . . . . 5 (𝑇 ∈ (GrTriangles‘𝐺) → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
65eleq2d 2817 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
7 f1oeq3 6753 . . . . . . 7 (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto𝑡𝑓:(0..^3)–1-1-onto𝑇))
87anbi1d 631 . . . . . 6 (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
98exbidv 1922 . . . . 5 (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
109elrab 3642 . . . 4 (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
116, 10bitrdi 287 . . 3 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
12 ovexd 7381 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (0..^3) ∈ V)
13 simpr 484 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → 𝑓:(0..^3)–1-1-onto𝑇)
1412, 13hasheqf1od 14260 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = (♯‘𝑇))
15 eqcom 2738 . . . . . . . . 9 ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = (♯‘(0..^3)))
16 3nn0 12399 . . . . . . . . . . 11 3 ∈ ℕ0
17 hashfzo0 14337 . . . . . . . . . . 11 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1816, 17mp1i 13 . . . . . . . . . 10 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (♯‘(0..^3)) = 3)
1918eqeq2d 2742 . . . . . . . . 9 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = (♯‘(0..^3)) ↔ (♯‘𝑇) = 3))
2015, 19bitrid 283 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) ↔ (♯‘𝑇) = 3))
21 hash3tpb 14402 . . . . . . . . . . . 12 (𝑇 ∈ 𝒫 𝑉 → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2221adantr 480 . . . . . . . . . . 11 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 ↔ ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2322biimpa 476 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → ∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}))
24 elpwi 4554 . . . . . . . . . . . . . 14 (𝑇 ∈ 𝒫 𝑉𝑇𝑉)
25 ss2rexv 4001 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
26 ssrexv 3999 . . . . . . . . . . . . . . . . 17 (𝑇𝑉 → (∃𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2726reximdv 3147 . . . . . . . . . . . . . . . 16 (𝑇𝑉 → (∃𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2827reximdv 3147 . . . . . . . . . . . . . . 15 (𝑇𝑉 → (∃𝑥𝑉𝑦𝑉𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
2925, 28syld 47 . . . . . . . . . . . . . 14 (𝑇𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3024, 29syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ 𝒫 𝑉 → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3130adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
3231adantr 480 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})))
33 simprr 772 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → 𝑇 = {𝑥, 𝑦, 𝑧})
34 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (♯‘𝑇) = 3)
35 f1oeq3 6753 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
36 grtriproplem 48038 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
37362a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
3837ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))))
4035, 39biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑓:(0..^3)–1-1-onto𝑇 → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4140adantld 490 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))))
4241imp4c 423 . . . . . . . . . . . . . . . . . . . 20 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ((𝑥𝑉𝑦𝑉) → (𝑧𝑉 → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
4342imp4c 423 . . . . . . . . . . . . . . . . . . 19 (𝑇 = {𝑥, 𝑦, 𝑧} → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4443adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4544impcom 407 . . . . . . . . . . . . . . . . 17 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))
4633, 34, 453jca 1128 . . . . . . . . . . . . . . . 16 (((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) ∧ ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧})) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4746ex 412 . . . . . . . . . . . . . . 15 ((((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑧𝑉) → (((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4847reximdva 3145 . . . . . . . . . . . . . 14 (((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
4948reximdvva 3180 . . . . . . . . . . . . 13 ((((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5049ex 412 . . . . . . . . . . . 12 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5150com23 86 . . . . . . . . . . 11 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5232, 51syld 47 . . . . . . . . . 10 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (∃𝑥𝑇𝑦𝑇𝑧𝑇 ((𝑥𝑦𝑥𝑧𝑦𝑧) ∧ 𝑇 = {𝑥, 𝑦, 𝑧}) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5323, 52mpd 15 . . . . . . . . 9 (((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) ∧ (♯‘𝑇) = 3) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5453ex 412 . . . . . . . 8 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘𝑇) = 3 → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5520, 54sylbid 240 . . . . . . 7 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → ((♯‘(0..^3)) = (♯‘𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))))
5614, 55mpd 15 . . . . . 6 ((𝑇 ∈ 𝒫 𝑉𝑓:(0..^3)–1-1-onto𝑇) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5756expimpd 453 . . . . 5 (𝑇 ∈ 𝒫 𝑉 → ((𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5857exlimdv 1934 . . . 4 (𝑇 ∈ 𝒫 𝑉 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
5958imp 406 . . 3 ((𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
6011, 59biimtrdi 253 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))))
6160pm2.43i 52 1 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4547  {cpr 4575  {ctp 4577  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  2c2 12180  3c3 12181  0cn0 12381  ..^cfzo 13554  chash 14237  Vtxcvtx 28974  Edgcedg 29025  GrTrianglescgrtri 48036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-3o 8387  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-grtri 48037
This theorem is referenced by:  grtrif1o  48041  isgrtri  48042  grtrissvtx  48043  grimgrtri  48048  grlimgrtri  48102
  Copyright terms: Public domain W3C validator