Step | Hyp | Ref
| Expression |
1 | | grtri.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | grtri.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | grtriprop 47792 |
. 2
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
4 | | df-tp 4653 |
. . . . . . . . . 10
⊢ {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧}) |
5 | | prelpwi 5467 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉) |
6 | | snelpwi 5463 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑉 → {𝑧} ∈ 𝒫 𝑉) |
7 | 5, 6 | anim12i 612 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑉) → ({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉)) |
8 | 7 | anasss 466 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉)) |
9 | | pwuncl 7805 |
. . . . . . . . . . 11
⊢ (({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉) → ({𝑥, 𝑦} ∪ {𝑧}) ∈ 𝒫 𝑉) |
10 | 8, 9 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ({𝑥, 𝑦} ∪ {𝑧}) ∈ 𝒫 𝑉) |
11 | 4, 10 | eqeltrid 2848 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉) |
12 | 11 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉) |
13 | | eleq1 2832 |
. . . . . . . . . 10
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)) |
14 | 13 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)) |
15 | 14 | adantl 481 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)) |
16 | 12, 15 | mpbird 257 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → 𝑇 ∈ 𝒫 𝑉) |
17 | | ovex 7481 |
. . . . . . . . . 10
⊢ (0..^3)
∈ V |
18 | 17 | mptex 7260 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) ∈ V |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) ∈ V) |
20 | | 3anass 1095 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉))) |
21 | 20 | biimpri 228 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) |
22 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (♯‘𝑇) = (♯‘{𝑥, 𝑦, 𝑧})) |
23 | 22 | eqcomd 2746 |
. . . . . . . . . . . . 13
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → (♯‘{𝑥, 𝑦, 𝑧}) = (♯‘𝑇)) |
24 | 23 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘{𝑥, 𝑦, 𝑧}) = (♯‘𝑇)) |
25 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘𝑇) = 3) |
26 | 24, 25 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘{𝑥, 𝑦, 𝑧}) = 3) |
27 | | eqid 2740 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) |
28 | | eqid 2740 |
. . . . . . . . . . . 12
⊢ {𝑥, 𝑦, 𝑧} = {𝑥, 𝑦, 𝑧} |
29 | 27, 28 | tpf1o 14550 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ (♯‘{𝑥, 𝑦, 𝑧}) = 3) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}) |
30 | 21, 26, 29 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}) |
31 | | f1oeq3 6852 |
. . . . . . . . . . . 12
⊢ (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})) |
32 | 31 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})) |
33 | 32 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})) |
34 | 30, 33 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇) |
35 | 27 | tpf1ofv0 14545 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0) = 𝑥) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0) = 𝑥) |
37 | 27 | tpf1ofv1 14546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦) |
40 | 36, 39 | preq12d 4766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} = {𝑥, 𝑦}) |
41 | 40 | eqcomd 2746 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {𝑥, 𝑦} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)}) |
42 | 41 | eleq1d 2829 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸)) |
43 | 27 | tpf1ofv2 14547 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧) |
45 | 44 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧) |
46 | 36, 45 | preq12d 4766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} = {𝑥, 𝑧}) |
47 | 46 | eqcomd 2746 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {𝑥, 𝑧} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)}) |
48 | 47 | eleq1d 2829 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ({𝑥, 𝑧} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)) |
49 | 39, 45 | preq12d 4766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} = {𝑦, 𝑧}) |
50 | 49 | eqcomd 2746 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → {𝑦, 𝑧} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)}) |
51 | 50 | eleq1d 2829 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ({𝑦, 𝑧} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)) |
52 | 42, 48, 51 | 3anbi123d 1436 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))) |
53 | 52 | biimpd 229 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))) |
54 | 53 | 2a1d 26 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑇 = {𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))))) |
55 | 54 | 3imp2 1349 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)) |
56 | 34, 55 | jca 511 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇 ∧ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))) |
57 | | f1oeq1 6850 |
. . . . . . . . 9
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓:(0..^3)–1-1-onto→𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇)) |
58 | | fveq1 6919 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘0) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0)) |
59 | | fveq1 6919 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘1) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)) |
60 | 58, 59 | preq12d 4766 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘0), (𝑓‘1)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)}) |
61 | 60 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸)) |
62 | | fveq1 6919 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘2) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)) |
63 | 58, 62 | preq12d 4766 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘0), (𝑓‘2)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)}) |
64 | 63 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)) |
65 | 59, 62 | preq12d 4766 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘1), (𝑓‘2)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)}) |
66 | 65 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)) |
67 | 61, 64, 66 | 3anbi123d 1436 |
. . . . . . . . 9
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))) |
68 | 57, 67 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ((𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→𝑇 ∧ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))) |
69 | 19, 56, 68 | spcedv 3611 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))) |
70 | 16, 69 | jca 511 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
71 | 1 | 1vgrex 29037 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑉 → 𝐺 ∈ V) |
72 | 1, 2 | grtri 47791 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ V →
(GrTriangles‘𝐺) =
{𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) |
73 | 72 | eleq2d 2830 |
. . . . . . . . . 10
⊢ (𝐺 ∈ V → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})) |
74 | 71, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑉 → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})) |
75 | | f1oeq3 6852 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto→𝑡 ↔ 𝑓:(0..^3)–1-1-onto→𝑇)) |
76 | 75 | anbi1d 630 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
77 | 76 | exbidv 1920 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
78 | 77 | elrab 3708 |
. . . . . . . . 9
⊢ (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))) |
79 | 74, 78 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))) |
80 | 79 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))) |
81 | 80 | adantr 480 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))) |
82 | 70, 81 | mpbird 257 |
. . . . 5
⊢ (((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → 𝑇 ∈ (GrTriangles‘𝐺)) |
83 | 82 | ex 412 |
. . . 4
⊢ ((𝑥 ∈ 𝑉 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺))) |
84 | 83 | rexlimdvva 3219 |
. . 3
⊢ (𝑥 ∈ 𝑉 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺))) |
85 | 84 | rexlimiv 3154 |
. 2
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺)) |
86 | 3, 85 | impbii 209 |
1
⊢ (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |