Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrtri Structured version   Visualization version   GIF version

Theorem isgrtri 48042
Description: A triangle in a graph. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isgrtri (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝐸,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem isgrtri
Dummy variables 𝑓 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grtri.v . . 3 𝑉 = (Vtx‘𝐺)
2 grtri.e . . 3 𝐸 = (Edg‘𝐺)
31, 2grtriprop 48040 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4 df-tp 4578 . . . . . . . . . 10 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
5 prelpwi 5386 . . . . . . . . . . . . 13 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
6 snelpwi 5383 . . . . . . . . . . . . 13 (𝑧𝑉 → {𝑧} ∈ 𝒫 𝑉)
75, 6anim12i 613 . . . . . . . . . . . 12 (((𝑥𝑉𝑦𝑉) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉))
87anasss 466 . . . . . . . . . . 11 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉))
9 pwuncl 7703 . . . . . . . . . . 11 (({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉) → ({𝑥, 𝑦} ∪ {𝑧}) ∈ 𝒫 𝑉)
108, 9syl 17 . . . . . . . . . 10 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑦} ∪ {𝑧}) ∈ 𝒫 𝑉)
114, 10eqeltrid 2835 . . . . . . . . 9 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)
1211adantr 480 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)
13 eleq1 2819 . . . . . . . . . 10 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉))
14133ad2ant1 1133 . . . . . . . . 9 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉))
1514adantl 481 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉))
1612, 15mpbird 257 . . . . . . 7 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → 𝑇 ∈ 𝒫 𝑉)
17 ovex 7379 . . . . . . . . . 10 (0..^3) ∈ V
1817mptex 7157 . . . . . . . . 9 (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) ∈ V
1918a1i 11 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) ∈ V)
20 3anass 1094 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉𝑧𝑉) ↔ (𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)))
2120biimpri 228 . . . . . . . . . . 11 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (𝑥𝑉𝑦𝑉𝑧𝑉))
22 fveq2 6822 . . . . . . . . . . . . . 14 (𝑇 = {𝑥, 𝑦, 𝑧} → (♯‘𝑇) = (♯‘{𝑥, 𝑦, 𝑧}))
2322eqcomd 2737 . . . . . . . . . . . . 13 (𝑇 = {𝑥, 𝑦, 𝑧} → (♯‘{𝑥, 𝑦, 𝑧}) = (♯‘𝑇))
24233ad2ant1 1133 . . . . . . . . . . . 12 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘{𝑥, 𝑦, 𝑧}) = (♯‘𝑇))
25 simp2 1137 . . . . . . . . . . . 12 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘𝑇) = 3)
2624, 25eqtrd 2766 . . . . . . . . . . 11 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘{𝑥, 𝑦, 𝑧}) = 3)
27 eqid 2731 . . . . . . . . . . . 12 (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))
28 eqid 2731 . . . . . . . . . . . 12 {𝑥, 𝑦, 𝑧} = {𝑥, 𝑦, 𝑧}
2927, 28tpf1o 14408 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉𝑧𝑉) ∧ (♯‘{𝑥, 𝑦, 𝑧}) = 3) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})
3021, 26, 29syl2an 596 . . . . . . . . . 10 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})
31 f1oeq3 6753 . . . . . . . . . . . 12 (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
32313ad2ant1 1133 . . . . . . . . . . 11 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
3332adantl 481 . . . . . . . . . 10 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
3430, 33mpbird 257 . . . . . . . . 9 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇)
3527tpf1ofv0 14403 . . . . . . . . . . . . . . . . 17 (𝑥𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0) = 𝑥)
3635adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0) = 𝑥)
3727tpf1ofv1 14404 . . . . . . . . . . . . . . . . . 18 (𝑦𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦)
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦𝑉𝑧𝑉) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦)
3938adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦)
4036, 39preq12d 4691 . . . . . . . . . . . . . . 15 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} = {𝑥, 𝑦})
4140eqcomd 2737 . . . . . . . . . . . . . 14 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑥, 𝑦} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)})
4241eleq1d 2816 . . . . . . . . . . . . 13 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸))
4327tpf1ofv2 14405 . . . . . . . . . . . . . . . . . 18 (𝑧𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧)
4443adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦𝑉𝑧𝑉) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧)
4544adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧)
4636, 45preq12d 4691 . . . . . . . . . . . . . . 15 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} = {𝑥, 𝑧})
4746eqcomd 2737 . . . . . . . . . . . . . 14 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑥, 𝑧} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
4847eleq1d 2816 . . . . . . . . . . . . 13 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑧} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
4939, 45preq12d 4691 . . . . . . . . . . . . . . 15 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} = {𝑦, 𝑧})
5049eqcomd 2737 . . . . . . . . . . . . . 14 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑦, 𝑧} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
5150eleq1d 2816 . . . . . . . . . . . . 13 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑦, 𝑧} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
5242, 48, 513anbi123d 1438 . . . . . . . . . . . 12 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
5352biimpd 229 . . . . . . . . . . 11 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
54532a1d 26 . . . . . . . . . 10 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (𝑇 = {𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))))
55543imp2 1350 . . . . . . . . 9 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
5634, 55jca 511 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ∧ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
57 f1oeq1 6751 . . . . . . . . 9 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓:(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇))
58 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘0) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0))
59 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘1) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1))
6058, 59preq12d 4691 . . . . . . . . . . 11 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘0), (𝑓‘1)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)})
6160eleq1d 2816 . . . . . . . . . 10 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸))
62 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘2) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2))
6358, 62preq12d 4691 . . . . . . . . . . 11 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘0), (𝑓‘2)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
6463eleq1d 2816 . . . . . . . . . 10 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
6559, 62preq12d 4691 . . . . . . . . . . 11 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘1), (𝑓‘2)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
6665eleq1d 2816 . . . . . . . . . 10 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
6761, 64, 663anbi123d 1438 . . . . . . . . 9 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
6857, 67anbi12d 632 . . . . . . . 8 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ((𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ∧ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))))
6919, 56, 68spcedv 3548 . . . . . . 7 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))
7016, 69jca 511 . . . . . 6 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7111vgrex 28980 . . . . . . . . . 10 (𝑥𝑉𝐺 ∈ V)
721, 2grtri 48039 . . . . . . . . . . 11 (𝐺 ∈ V → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
7372eleq2d 2817 . . . . . . . . . 10 (𝐺 ∈ V → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
7471, 73syl 17 . . . . . . . . 9 (𝑥𝑉 → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
75 f1oeq3 6753 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto𝑡𝑓:(0..^3)–1-1-onto𝑇))
7675anbi1d 631 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7776exbidv 1922 . . . . . . . . . 10 (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7877elrab 3642 . . . . . . . . 9 (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7974, 78bitrdi 287 . . . . . . . 8 (𝑥𝑉 → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
8079adantr 480 . . . . . . 7 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
8180adantr 480 . . . . . 6 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
8270, 81mpbird 257 . . . . 5 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → 𝑇 ∈ (GrTriangles‘𝐺))
8382ex 412 . . . 4 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺)))
8483rexlimdvva 3189 . . 3 (𝑥𝑉 → (∃𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺)))
8584rexlimiv 3126 . 2 (∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺))
863, 85impbii 209 1 (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  ifcif 4472  𝒫 cpw 4547  {csn 4573  {cpr 4575  {ctp 4577  cmpt 5170  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  2c2 12180  3c3 12181  ..^cfzo 13554  chash 14237  Vtxcvtx 28974  Edgcedg 29025  GrTrianglescgrtri 48036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-3o 8387  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-grtri 48037
This theorem is referenced by:  cycl3grtri  48046  grimgrtri  48048  usgrgrtrirex  48049  grlimgrtri  48102  usgrexmpl1tri  48124
  Copyright terms: Public domain W3C validator