Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrtri Structured version   Visualization version   GIF version

Theorem isgrtri 47794
Description: A triangle in a graph. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
grtri.v 𝑉 = (Vtx‘𝐺)
grtri.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isgrtri (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝐸,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem isgrtri
Dummy variables 𝑓 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grtri.v . . 3 𝑉 = (Vtx‘𝐺)
2 grtri.e . . 3 𝐸 = (Edg‘𝐺)
31, 2grtriprop 47792 . 2 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
4 df-tp 4653 . . . . . . . . . 10 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
5 prelpwi 5467 . . . . . . . . . . . . 13 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ∈ 𝒫 𝑉)
6 snelpwi 5463 . . . . . . . . . . . . 13 (𝑧𝑉 → {𝑧} ∈ 𝒫 𝑉)
75, 6anim12i 612 . . . . . . . . . . . 12 (((𝑥𝑉𝑦𝑉) ∧ 𝑧𝑉) → ({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉))
87anasss 466 . . . . . . . . . . 11 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉))
9 pwuncl 7805 . . . . . . . . . . 11 (({𝑥, 𝑦} ∈ 𝒫 𝑉 ∧ {𝑧} ∈ 𝒫 𝑉) → ({𝑥, 𝑦} ∪ {𝑧}) ∈ 𝒫 𝑉)
108, 9syl 17 . . . . . . . . . 10 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑦} ∪ {𝑧}) ∈ 𝒫 𝑉)
114, 10eqeltrid 2848 . . . . . . . . 9 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)
1211adantr 480 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉)
13 eleq1 2832 . . . . . . . . . 10 (𝑇 = {𝑥, 𝑦, 𝑧} → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉))
14133ad2ant1 1133 . . . . . . . . 9 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉))
1514adantl 481 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ 𝒫 𝑉 ↔ {𝑥, 𝑦, 𝑧} ∈ 𝒫 𝑉))
1612, 15mpbird 257 . . . . . . 7 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → 𝑇 ∈ 𝒫 𝑉)
17 ovex 7481 . . . . . . . . . 10 (0..^3) ∈ V
1817mptex 7260 . . . . . . . . 9 (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) ∈ V
1918a1i 11 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) ∈ V)
20 3anass 1095 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉𝑧𝑉) ↔ (𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)))
2120biimpri 228 . . . . . . . . . . 11 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (𝑥𝑉𝑦𝑉𝑧𝑉))
22 fveq2 6920 . . . . . . . . . . . . . 14 (𝑇 = {𝑥, 𝑦, 𝑧} → (♯‘𝑇) = (♯‘{𝑥, 𝑦, 𝑧}))
2322eqcomd 2746 . . . . . . . . . . . . 13 (𝑇 = {𝑥, 𝑦, 𝑧} → (♯‘{𝑥, 𝑦, 𝑧}) = (♯‘𝑇))
24233ad2ant1 1133 . . . . . . . . . . . 12 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘{𝑥, 𝑦, 𝑧}) = (♯‘𝑇))
25 simp2 1137 . . . . . . . . . . . 12 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘𝑇) = 3)
2624, 25eqtrd 2780 . . . . . . . . . . 11 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → (♯‘{𝑥, 𝑦, 𝑧}) = 3)
27 eqid 2740 . . . . . . . . . . . 12 (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))
28 eqid 2740 . . . . . . . . . . . 12 {𝑥, 𝑦, 𝑧} = {𝑥, 𝑦, 𝑧}
2927, 28tpf1o 14550 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉𝑧𝑉) ∧ (♯‘{𝑥, 𝑦, 𝑧}) = 3) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})
3021, 26, 29syl2an 595 . . . . . . . . . 10 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧})
31 f1oeq3 6852 . . . . . . . . . . . 12 (𝑇 = {𝑥, 𝑦, 𝑧} → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
32313ad2ant1 1133 . . . . . . . . . . 11 ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
3332adantl 481 . . . . . . . . . 10 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧}))
3430, 33mpbird 257 . . . . . . . . 9 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇)
3527tpf1ofv0 14545 . . . . . . . . . . . . . . . . 17 (𝑥𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0) = 𝑥)
3635adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0) = 𝑥)
3727tpf1ofv1 14546 . . . . . . . . . . . . . . . . . 18 (𝑦𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦)
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦𝑉𝑧𝑉) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦)
3938adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1) = 𝑦)
4036, 39preq12d 4766 . . . . . . . . . . . . . . 15 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} = {𝑥, 𝑦})
4140eqcomd 2746 . . . . . . . . . . . . . 14 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑥, 𝑦} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)})
4241eleq1d 2829 . . . . . . . . . . . . 13 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸))
4327tpf1ofv2 14547 . . . . . . . . . . . . . . . . . 18 (𝑧𝑉 → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧)
4443adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦𝑉𝑧𝑉) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧)
4544adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2) = 𝑧)
4636, 45preq12d 4766 . . . . . . . . . . . . . . 15 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} = {𝑥, 𝑧})
4746eqcomd 2746 . . . . . . . . . . . . . 14 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑥, 𝑧} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
4847eleq1d 2829 . . . . . . . . . . . . 13 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑥, 𝑧} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
4939, 45preq12d 4766 . . . . . . . . . . . . . . 15 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} = {𝑦, 𝑧})
5049eqcomd 2746 . . . . . . . . . . . . . 14 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → {𝑦, 𝑧} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
5150eleq1d 2829 . . . . . . . . . . . . 13 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ({𝑦, 𝑧} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
5242, 48, 513anbi123d 1436 . . . . . . . . . . . 12 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
5352biimpd 229 . . . . . . . . . . 11 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
54532a1d 26 . . . . . . . . . 10 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (𝑇 = {𝑥, 𝑦, 𝑧} → ((♯‘𝑇) = 3 → (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))))
55543imp2 1349 . . . . . . . . 9 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
5634, 55jca 511 . . . . . . . 8 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ∧ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
57 f1oeq1 6850 . . . . . . . . 9 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓:(0..^3)–1-1-onto𝑇 ↔ (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇))
58 fveq1 6919 . . . . . . . . . . . 12 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘0) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0))
59 fveq1 6919 . . . . . . . . . . . 12 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘1) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1))
6058, 59preq12d 4766 . . . . . . . . . . 11 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘0), (𝑓‘1)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)})
6160eleq1d 2829 . . . . . . . . . 10 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸))
62 fveq1 6919 . . . . . . . . . . . 12 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (𝑓‘2) = ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2))
6358, 62preq12d 4766 . . . . . . . . . . 11 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘0), (𝑓‘2)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
6463eleq1d 2829 . . . . . . . . . 10 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
6559, 62preq12d 4766 . . . . . . . . . . 11 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → {(𝑓‘1), (𝑓‘2)} = {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)})
6665eleq1d 2829 . . . . . . . . . 10 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))
6761, 64, 663anbi123d 1436 . . . . . . . . 9 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸)))
6857, 67anbi12d 631 . . . . . . . 8 (𝑓 = (𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))) → ((𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧))):(0..^3)–1-1-onto𝑇 ∧ ({((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘0), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸 ∧ {((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘1), ((𝑖 ∈ (0..^3) ↦ if(𝑖 = 0, 𝑥, if(𝑖 = 1, 𝑦, 𝑧)))‘2)} ∈ 𝐸))))
6919, 56, 68spcedv 3611 . . . . . . 7 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))
7016, 69jca 511 . . . . . 6 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7111vgrex 29037 . . . . . . . . . 10 (𝑥𝑉𝐺 ∈ V)
721, 2grtri 47791 . . . . . . . . . . 11 (𝐺 ∈ V → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))})
7372eleq2d 2830 . . . . . . . . . 10 (𝐺 ∈ V → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
7471, 73syl 17 . . . . . . . . 9 (𝑥𝑉 → (𝑇 ∈ (GrTriangles‘𝐺) ↔ 𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}))
75 f1oeq3 6852 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (𝑓:(0..^3)–1-1-onto𝑡𝑓:(0..^3)–1-1-onto𝑇))
7675anbi1d 630 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ (𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7776exbidv 1920 . . . . . . . . . 10 (𝑡 = 𝑇 → (∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) ↔ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7877elrab 3708 . . . . . . . . 9 (𝑇 ∈ {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))} ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))))
7974, 78bitrdi 287 . . . . . . . 8 (𝑥𝑉 → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
8079adantr 480 . . . . . . 7 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
8180adantr 480 . . . . . 6 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → (𝑇 ∈ (GrTriangles‘𝐺) ↔ (𝑇 ∈ 𝒫 𝑉 ∧ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑇 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)))))
8270, 81mpbird 257 . . . . 5 (((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) ∧ (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) → 𝑇 ∈ (GrTriangles‘𝐺))
8382ex 412 . . . 4 ((𝑥𝑉 ∧ (𝑦𝑉𝑧𝑉)) → ((𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺)))
8483rexlimdvva 3219 . . 3 (𝑥𝑉 → (∃𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺)))
8584rexlimiv 3154 . 2 (∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) → 𝑇 ∈ (GrTriangles‘𝐺))
863, 85impbii 209 1 (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  ifcif 4548  𝒫 cpw 4622  {csn 4648  {cpr 4650  {ctp 4652  cmpt 5249  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  2c2 12348  3c3 12349  ..^cfzo 13711  chash 14379  Vtxcvtx 29031  Edgcedg 29082  GrTrianglescgrtri 47788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-3o 8524  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-grtri 47789
This theorem is referenced by:  grimgrtri  47798  usgrgrtrirex  47799  grlimgrtri  47820  usgrexmpl1tri  47840
  Copyright terms: Public domain W3C validator