Proof of Theorem grtriproplem
Step | Hyp | Ref
| Expression |
1 | | f1of1 6861 |
. . 3
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → 𝑓:(0..^3)–1-1→{𝑥, 𝑦, 𝑧}) |
2 | | fvf1tp 13840 |
. . 3
⊢ (𝑓:(0..^3)–1-1→{𝑥, 𝑦, 𝑧} → ((((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦)) ∨ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥)) ∨ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) ∨ ((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥)))) |
3 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (𝑓‘0) = 𝑥) |
4 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (𝑓‘1) = 𝑦) |
5 | 3, 4 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘1)} = {𝑥, 𝑦}) |
6 | 5 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) |
7 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (𝑓‘2) = 𝑧) |
8 | 3, 7 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘2)} = {𝑥, 𝑧}) |
9 | 8 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸)) |
10 | 4, 7 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘1), (𝑓‘2)} = {𝑦, 𝑧}) |
11 | 10 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) |
12 | 6, 9, 11 | 3anbi123d 1436 |
. . . . . 6
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
13 | 12 | biimpd 229 |
. . . . 5
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
14 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (𝑓‘0) = 𝑥) |
15 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (𝑓‘1) = 𝑧) |
16 | 14, 15 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘1)} = {𝑥, 𝑧}) |
17 | 16 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸)) |
18 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (𝑓‘2) = 𝑦) |
19 | 14, 18 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘2)} = {𝑥, 𝑦}) |
20 | 19 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) |
21 | 15, 18 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘1), (𝑓‘2)} = {𝑧, 𝑦}) |
22 | 21 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) |
23 | 17, 20, 22 | 3anbi123d 1436 |
. . . . . 6
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸))) |
24 | | 3ancoma 1098 |
. . . . . . 7
⊢ (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸)) |
25 | | prcom 4757 |
. . . . . . . . 9
⊢ {𝑧, 𝑦} = {𝑦, 𝑧} |
26 | 25 | eleq1i 2835 |
. . . . . . . 8
⊢ ({𝑧, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸) |
27 | 26 | 3anbi3i 1159 |
. . . . . . 7
⊢ (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
28 | 24, 27 | sylbb 219 |
. . . . . 6
⊢ (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
29 | 23, 28 | biimtrdi 253 |
. . . . 5
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
30 | 13, 29 | jaoi 856 |
. . . 4
⊢ ((((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦)) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
31 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (𝑓‘0) = 𝑦) |
32 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (𝑓‘1) = 𝑥) |
33 | 31, 32 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘1)} = {𝑦, 𝑥}) |
34 | 33 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) |
35 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (𝑓‘2) = 𝑧) |
36 | 31, 35 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘2)} = {𝑦, 𝑧}) |
37 | 36 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) |
38 | 32, 35 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘1), (𝑓‘2)} = {𝑥, 𝑧}) |
39 | 38 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸)) |
40 | 34, 37, 39 | 3anbi123d 1436 |
. . . . . 6
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))) |
41 | | 3ancomb 1099 |
. . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
42 | | prcom 4757 |
. . . . . . . . 9
⊢ {𝑦, 𝑥} = {𝑥, 𝑦} |
43 | 42 | eleq1i 2835 |
. . . . . . . 8
⊢ ({𝑦, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸) |
44 | 43 | 3anbi1i 1157 |
. . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
45 | 41, 44 | sylbb 219 |
. . . . . 6
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
46 | 40, 45 | biimtrdi 253 |
. . . . 5
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
47 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (𝑓‘0) = 𝑦) |
48 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (𝑓‘1) = 𝑧) |
49 | 47, 48 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘1)} = {𝑦, 𝑧}) |
50 | 49 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) |
51 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (𝑓‘2) = 𝑥) |
52 | 47, 51 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘2)} = {𝑦, 𝑥}) |
53 | 52 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) |
54 | 48, 51 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘1), (𝑓‘2)} = {𝑧, 𝑥}) |
55 | 54 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)) |
56 | 50, 53, 55 | 3anbi123d 1436 |
. . . . . 6
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸))) |
57 | | 3anrot 1100 |
. . . . . . 7
⊢ (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
58 | | prcom 4757 |
. . . . . . . . 9
⊢ {𝑧, 𝑥} = {𝑥, 𝑧} |
59 | 58 | eleq1i 2835 |
. . . . . . . 8
⊢ ({𝑧, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸) |
60 | | biid 261 |
. . . . . . . 8
⊢ ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸) |
61 | 43, 59, 60 | 3anbi123i 1155 |
. . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
62 | 57, 61 | sylbb 219 |
. . . . . 6
⊢ (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
63 | 56, 62 | biimtrdi 253 |
. . . . 5
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
64 | 46, 63 | jaoi 856 |
. . . 4
⊢ ((((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥)) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
65 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (𝑓‘0) = 𝑧) |
66 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (𝑓‘1) = 𝑥) |
67 | 65, 66 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘1)} = {𝑧, 𝑥}) |
68 | 67 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)) |
69 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (𝑓‘2) = 𝑦) |
70 | 65, 69 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘2)} = {𝑧, 𝑦}) |
71 | 70 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) |
72 | 66, 69 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘1), (𝑓‘2)} = {𝑥, 𝑦}) |
73 | 72 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) |
74 | 68, 71, 73 | 3anbi123d 1436 |
. . . . . 6
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
75 | | 3anrot 1100 |
. . . . . . 7
⊢ (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
76 | | prcom 4757 |
. . . . . . . . 9
⊢ {𝑥, 𝑧} = {𝑧, 𝑥} |
77 | 76 | eleq1i 2835 |
. . . . . . . 8
⊢ ({𝑥, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸) |
78 | | prcom 4757 |
. . . . . . . . 9
⊢ {𝑦, 𝑧} = {𝑧, 𝑦} |
79 | 78 | eleq1i 2835 |
. . . . . . . 8
⊢ ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸) |
80 | | biid 261 |
. . . . . . . 8
⊢ ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸) |
81 | 77, 79, 80 | 3anbi123i 1155 |
. . . . . . 7
⊢ (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
82 | 75, 81 | sylbbr 236 |
. . . . . 6
⊢ (({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
83 | 74, 82 | biimtrdi 253 |
. . . . 5
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
84 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (𝑓‘0) = 𝑧) |
85 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (𝑓‘1) = 𝑦) |
86 | 84, 85 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘1)} = {𝑧, 𝑦}) |
87 | 86 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) |
88 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (𝑓‘2) = 𝑥) |
89 | 84, 88 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘2)} = {𝑧, 𝑥}) |
90 | 89 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)) |
91 | 85, 88 | preq12d 4766 |
. . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘1), (𝑓‘2)} = {𝑦, 𝑥}) |
92 | 91 | eleq1d 2829 |
. . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) |
93 | 87, 90, 92 | 3anbi123d 1436 |
. . . . . 6
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))) |
94 | | 3anrev 1101 |
. . . . . . 7
⊢ (({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸)) |
95 | 43, 59, 26 | 3anbi123i 1155 |
. . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
96 | 94, 95 | sylbb 219 |
. . . . . 6
⊢ (({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |
97 | 93, 96 | biimtrdi 253 |
. . . . 5
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
98 | 83, 97 | jaoi 856 |
. . . 4
⊢ ((((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) ∨ ((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥)) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
99 | 30, 64, 98 | 3jaoi 1428 |
. . 3
⊢
(((((𝑓‘0) =
𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦)) ∨ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥)) ∨ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) ∨ ((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥))) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
100 | 1, 2, 99 | 3syl 18 |
. 2
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) |
101 | 100 | imp 406 |
1
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |