Proof of Theorem grtriproplem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | f1of1 6847 | . . 3
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → 𝑓:(0..^3)–1-1→{𝑥, 𝑦, 𝑧}) | 
| 2 |  | fvf1tp 13829 | . . 3
⊢ (𝑓:(0..^3)–1-1→{𝑥, 𝑦, 𝑧} → ((((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦)) ∨ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥)) ∨ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) ∨ ((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥)))) | 
| 3 |  | simp1 1137 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (𝑓‘0) = 𝑥) | 
| 4 |  | simp2 1138 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (𝑓‘1) = 𝑦) | 
| 5 | 3, 4 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘1)} = {𝑥, 𝑦}) | 
| 6 | 5 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) | 
| 7 |  | simp3 1139 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (𝑓‘2) = 𝑧) | 
| 8 | 3, 7 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘2)} = {𝑥, 𝑧}) | 
| 9 | 8 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸)) | 
| 10 | 4, 7 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘1), (𝑓‘2)} = {𝑦, 𝑧}) | 
| 11 | 10 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) | 
| 12 | 6, 9, 11 | 3anbi123d 1438 | . . . . . 6
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 13 | 12 | biimpd 229 | . . . . 5
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 14 |  | simp1 1137 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (𝑓‘0) = 𝑥) | 
| 15 |  | simp2 1138 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (𝑓‘1) = 𝑧) | 
| 16 | 14, 15 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘1)} = {𝑥, 𝑧}) | 
| 17 | 16 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸)) | 
| 18 |  | simp3 1139 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (𝑓‘2) = 𝑦) | 
| 19 | 14, 18 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘2)} = {𝑥, 𝑦}) | 
| 20 | 19 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) | 
| 21 | 15, 18 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘1), (𝑓‘2)} = {𝑧, 𝑦}) | 
| 22 | 21 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) | 
| 23 | 17, 20, 22 | 3anbi123d 1438 | . . . . . 6
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸))) | 
| 24 |  | 3ancoma 1098 | . . . . . . 7
⊢ (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸)) | 
| 25 |  | prcom 4732 | . . . . . . . . 9
⊢ {𝑧, 𝑦} = {𝑦, 𝑧} | 
| 26 | 25 | eleq1i 2832 | . . . . . . . 8
⊢ ({𝑧, 𝑦} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸) | 
| 27 | 26 | 3anbi3i 1160 | . . . . . . 7
⊢ (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 28 | 24, 27 | sylbb 219 | . . . . . 6
⊢ (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 29 | 23, 28 | biimtrdi 253 | . . . . 5
⊢ (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 30 | 13, 29 | jaoi 858 | . . . 4
⊢ ((((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦)) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 31 |  | simp1 1137 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (𝑓‘0) = 𝑦) | 
| 32 |  | simp2 1138 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (𝑓‘1) = 𝑥) | 
| 33 | 31, 32 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘1)} = {𝑦, 𝑥}) | 
| 34 | 33 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) | 
| 35 |  | simp3 1139 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (𝑓‘2) = 𝑧) | 
| 36 | 31, 35 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘0), (𝑓‘2)} = {𝑦, 𝑧}) | 
| 37 | 36 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) | 
| 38 | 32, 35 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → {(𝑓‘1), (𝑓‘2)} = {𝑥, 𝑧}) | 
| 39 | 38 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸)) | 
| 40 | 34, 37, 39 | 3anbi123d 1438 | . . . . . 6
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸))) | 
| 41 |  | 3ancomb 1099 | . . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 42 |  | prcom 4732 | . . . . . . . . 9
⊢ {𝑦, 𝑥} = {𝑥, 𝑦} | 
| 43 | 42 | eleq1i 2832 | . . . . . . . 8
⊢ ({𝑦, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸) | 
| 44 | 43 | 3anbi1i 1158 | . . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 45 | 41, 44 | sylbb 219 | . . . . . 6
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 46 | 40, 45 | biimtrdi 253 | . . . . 5
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 47 |  | simp1 1137 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (𝑓‘0) = 𝑦) | 
| 48 |  | simp2 1138 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (𝑓‘1) = 𝑧) | 
| 49 | 47, 48 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘1)} = {𝑦, 𝑧}) | 
| 50 | 49 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸)) | 
| 51 |  | simp3 1139 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (𝑓‘2) = 𝑥) | 
| 52 | 47, 51 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘2)} = {𝑦, 𝑥}) | 
| 53 | 52 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) | 
| 54 | 48, 51 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘1), (𝑓‘2)} = {𝑧, 𝑥}) | 
| 55 | 54 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)) | 
| 56 | 50, 53, 55 | 3anbi123d 1438 | . . . . . 6
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸))) | 
| 57 |  | 3anrot 1100 | . . . . . . 7
⊢ (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 58 |  | prcom 4732 | . . . . . . . . 9
⊢ {𝑧, 𝑥} = {𝑥, 𝑧} | 
| 59 | 58 | eleq1i 2832 | . . . . . . . 8
⊢ ({𝑧, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑧} ∈ 𝐸) | 
| 60 |  | biid 261 | . . . . . . . 8
⊢ ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑦, 𝑧} ∈ 𝐸) | 
| 61 | 43, 59, 60 | 3anbi123i 1156 | . . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 62 | 57, 61 | sylbb 219 | . . . . . 6
⊢ (({𝑦, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 63 | 56, 62 | biimtrdi 253 | . . . . 5
⊢ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 64 | 46, 63 | jaoi 858 | . . . 4
⊢ ((((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥)) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 65 |  | simp1 1137 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (𝑓‘0) = 𝑧) | 
| 66 |  | simp2 1138 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (𝑓‘1) = 𝑥) | 
| 67 | 65, 66 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘1)} = {𝑧, 𝑥}) | 
| 68 | 67 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)) | 
| 69 |  | simp3 1139 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (𝑓‘2) = 𝑦) | 
| 70 | 65, 69 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘0), (𝑓‘2)} = {𝑧, 𝑦}) | 
| 71 | 70 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) | 
| 72 | 66, 69 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → {(𝑓‘1), (𝑓‘2)} = {𝑥, 𝑦}) | 
| 73 | 72 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸)) | 
| 74 | 68, 71, 73 | 3anbi123d 1438 | . . . . . 6
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))) | 
| 75 |  | 3anrot 1100 | . . . . . . 7
⊢ (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸) ↔ ({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) | 
| 76 |  | prcom 4732 | . . . . . . . . 9
⊢ {𝑥, 𝑧} = {𝑧, 𝑥} | 
| 77 | 76 | eleq1i 2832 | . . . . . . . 8
⊢ ({𝑥, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸) | 
| 78 |  | prcom 4732 | . . . . . . . . 9
⊢ {𝑦, 𝑧} = {𝑧, 𝑦} | 
| 79 | 78 | eleq1i 2832 | . . . . . . . 8
⊢ ({𝑦, 𝑧} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸) | 
| 80 |  | biid 261 | . . . . . . . 8
⊢ ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸) | 
| 81 | 77, 79, 80 | 3anbi123i 1156 | . . . . . . 7
⊢ (({𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ ({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) | 
| 82 | 75, 81 | sylbbr 236 | . . . . . 6
⊢ (({𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 83 | 74, 82 | biimtrdi 253 | . . . . 5
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 84 |  | simp1 1137 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (𝑓‘0) = 𝑧) | 
| 85 |  | simp2 1138 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (𝑓‘1) = 𝑦) | 
| 86 | 84, 85 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘1)} = {𝑧, 𝑦}) | 
| 87 | 86 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸)) | 
| 88 |  | simp3 1139 | . . . . . . . . 9
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (𝑓‘2) = 𝑥) | 
| 89 | 84, 88 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘0), (𝑓‘2)} = {𝑧, 𝑥}) | 
| 90 | 89 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ↔ {𝑧, 𝑥} ∈ 𝐸)) | 
| 91 | 85, 88 | preq12d 4741 | . . . . . . . 8
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → {(𝑓‘1), (𝑓‘2)} = {𝑦, 𝑥}) | 
| 92 | 91 | eleq1d 2826 | . . . . . . 7
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → ({(𝑓‘1), (𝑓‘2)} ∈ 𝐸 ↔ {𝑦, 𝑥} ∈ 𝐸)) | 
| 93 | 87, 90, 92 | 3anbi123d 1438 | . . . . . 6
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) ↔ ({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸))) | 
| 94 |  | 3anrev 1101 | . . . . . . 7
⊢ (({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) ↔ ({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸)) | 
| 95 | 43, 59, 26 | 3anbi123i 1156 | . . . . . . 7
⊢ (({𝑦, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑧, 𝑦} ∈ 𝐸) ↔ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 96 | 94, 95 | sylbb 219 | . . . . . 6
⊢ (({𝑧, 𝑦} ∈ 𝐸 ∧ {𝑧, 𝑥} ∈ 𝐸 ∧ {𝑦, 𝑥} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | 
| 97 | 93, 96 | biimtrdi 253 | . . . . 5
⊢ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 98 | 83, 97 | jaoi 858 | . . . 4
⊢ ((((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) ∨ ((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥)) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 99 | 30, 64, 98 | 3jaoi 1430 | . . 3
⊢
(((((𝑓‘0) =
𝑥 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑦)) ∨ (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑧) ∨ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑧 ∧ (𝑓‘2) = 𝑥)) ∨ (((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑥 ∧ (𝑓‘2) = 𝑦) ∨ ((𝑓‘0) = 𝑧 ∧ (𝑓‘1) = 𝑦 ∧ (𝑓‘2) = 𝑥))) → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 100 | 1, 2, 99 | 3syl 18 | . 2
⊢ (𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} → (({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | 
| 101 | 100 | imp 406 | 1
⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) |