Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hmeocldb | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) |
Ref | Expression |
---|---|
hmeocldb | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝑆) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 22911 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | 1 | 3ad2ant3 1134 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
3 | cnclima 22419 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝑆) ∈ (Clsd‘𝐽)) | |
4 | 2, 3 | sylan 580 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝑆) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 (class class class)co 7275 Topctop 22042 Clsdccld 22167 Cn ccn 22375 Homeochmeo 22904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-top 22043 df-topon 22060 df-cld 22170 df-cn 22378 df-hmeo 22906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |