MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocn Structured version   Visualization version   GIF version

Theorem hmeocn 22909
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem hmeocn
StepHypRef Expression
1 ishmeo 22908 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simplbi 498 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  ccnv 5589  (class class class)co 7271   Cn ccn 22373  Homeochmeo 22902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-map 8600  df-top 22041  df-topon 22058  df-cn 22376  df-hmeo 22904
This theorem is referenced by:  hmeocnv  22911  hmeof1o2  22912  hmeof1o  22913  hmeoopn  22915  hmeocld  22916  hmeocls  22917  hmeontr  22918  hmeoimaf1o  22919  hmeores  22920  hmeoco  22921  hmeoqtop  22924  hmphen  22934  haushmphlem  22936  cmphmph  22937  connhmph  22938  reghmph  22942  nrmhmph  22943  txhmeo  22952  xpstopnlem1  22958  tgpconncompeqg  23261  tgpconncomp  23262  qustgpopn  23269  mbfimaopnlem  24817  mndpluscn  31872  hmeocldb  34519
  Copyright terms: Public domain W3C validator