MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocn Structured version   Visualization version   GIF version

Theorem hmeocn 23645
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem hmeocn
StepHypRef Expression
1 ishmeo 23644 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simplbi 497 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ccnv 5618  (class class class)co 7349   Cn ccn 23109  Homeochmeo 23638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-top 22779  df-topon 22796  df-cn 23112  df-hmeo 23640
This theorem is referenced by:  hmeocnv  23647  hmeof1o2  23648  hmeof1o  23649  hmeoopn  23651  hmeocld  23652  hmeocls  23653  hmeontr  23654  hmeoimaf1o  23655  hmeores  23656  hmeoco  23657  hmeoqtop  23660  hmphen  23670  haushmphlem  23672  cmphmph  23673  connhmph  23674  reghmph  23678  nrmhmph  23679  txhmeo  23688  xpstopnlem1  23694  tgpconncompeqg  23997  tgpconncomp  23998  qustgpopn  24005  mbfimaopnlem  25554  mndpluscn  33909  hmeocldb  36328
  Copyright terms: Public domain W3C validator