MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocn Structured version   Visualization version   GIF version

Theorem hmeocn 22354
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem hmeocn
StepHypRef Expression
1 ishmeo 22353 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simplbi 501 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  ccnv 5535  (class class class)co 7138   Cn ccn 21818  Homeochmeo 22347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-map 8391  df-top 21488  df-topon 21505  df-cn 21821  df-hmeo 22349
This theorem is referenced by:  hmeocnv  22356  hmeof1o2  22357  hmeof1o  22358  hmeoopn  22360  hmeocld  22361  hmeocls  22362  hmeontr  22363  hmeoimaf1o  22364  hmeores  22365  hmeoco  22366  hmeoqtop  22369  hmphen  22379  haushmphlem  22381  cmphmph  22382  connhmph  22383  reghmph  22387  nrmhmph  22388  txhmeo  22397  xpstopnlem1  22403  tgpconncompeqg  22706  tgpconncomp  22707  qustgpopn  22714  mbfimaopnlem  24248  mndpluscn  31187  hmeocldb  33700
  Copyright terms: Public domain W3C validator