![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmeocn | Structured version Visualization version GIF version |
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeocn | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishmeo 23637 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ◡ccnv 5671 (class class class)co 7414 Cn ccn 23102 Homeochmeo 23631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8836 df-top 22770 df-topon 22787 df-cn 23105 df-hmeo 23633 |
This theorem is referenced by: hmeocnv 23640 hmeof1o2 23641 hmeof1o 23642 hmeoopn 23644 hmeocld 23645 hmeocls 23646 hmeontr 23647 hmeoimaf1o 23648 hmeores 23649 hmeoco 23650 hmeoqtop 23653 hmphen 23663 haushmphlem 23665 cmphmph 23666 connhmph 23667 reghmph 23671 nrmhmph 23672 txhmeo 23681 xpstopnlem1 23687 tgpconncompeqg 23990 tgpconncomp 23991 qustgpopn 23998 mbfimaopnlem 25558 mndpluscn 33450 hmeocldb 35741 |
Copyright terms: Public domain | W3C validator |