MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocn Structured version   Visualization version   GIF version

Theorem hmeocn 23680
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem hmeocn
StepHypRef Expression
1 ishmeo 23679 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simplbi 497 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ccnv 5630  (class class class)co 7369   Cn ccn 23144  Homeochmeo 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-top 22814  df-topon 22831  df-cn 23147  df-hmeo 23675
This theorem is referenced by:  hmeocnv  23682  hmeof1o2  23683  hmeof1o  23684  hmeoopn  23686  hmeocld  23687  hmeocls  23688  hmeontr  23689  hmeoimaf1o  23690  hmeores  23691  hmeoco  23692  hmeoqtop  23695  hmphen  23705  haushmphlem  23707  cmphmph  23708  connhmph  23709  reghmph  23713  nrmhmph  23714  txhmeo  23723  xpstopnlem1  23729  tgpconncompeqg  24032  tgpconncomp  24033  qustgpopn  24040  mbfimaopnlem  25589  mndpluscn  33909  hmeocldb  36315
  Copyright terms: Public domain W3C validator