MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocn Structured version   Visualization version   GIF version

Theorem hmeocn 23681
Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem hmeocn
StepHypRef Expression
1 ishmeo 23680 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simplbi 497 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ccnv 5630  (class class class)co 7369   Cn ccn 23145  Homeochmeo 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-top 22815  df-topon 22832  df-cn 23148  df-hmeo 23676
This theorem is referenced by:  hmeocnv  23683  hmeof1o2  23684  hmeof1o  23685  hmeoopn  23687  hmeocld  23688  hmeocls  23689  hmeontr  23690  hmeoimaf1o  23691  hmeores  23692  hmeoco  23693  hmeoqtop  23696  hmphen  23706  haushmphlem  23708  cmphmph  23709  connhmph  23710  reghmph  23714  nrmhmph  23715  txhmeo  23724  xpstopnlem1  23730  tgpconncompeqg  24033  tgpconncomp  24034  qustgpopn  24041  mbfimaopnlem  25590  mndpluscn  33910  hmeocldb  36316
  Copyright terms: Public domain W3C validator