| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeocn | Structured version Visualization version GIF version | ||
| Description: A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeocn | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishmeo 23697 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ◡ccnv 5653 (class class class)co 7405 Cn ccn 23162 Homeochmeo 23691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-top 22832 df-topon 22849 df-cn 23165 df-hmeo 23693 |
| This theorem is referenced by: hmeocnv 23700 hmeof1o2 23701 hmeof1o 23702 hmeoopn 23704 hmeocld 23705 hmeocls 23706 hmeontr 23707 hmeoimaf1o 23708 hmeores 23709 hmeoco 23710 hmeoqtop 23713 hmphen 23723 haushmphlem 23725 cmphmph 23726 connhmph 23727 reghmph 23731 nrmhmph 23732 txhmeo 23741 xpstopnlem1 23747 tgpconncompeqg 24050 tgpconncomp 24051 qustgpopn 24058 mbfimaopnlem 25608 mndpluscn 33957 hmeocldb 36352 |
| Copyright terms: Public domain | W3C validator |