Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hof1fval | Structured version Visualization version GIF version |
Description: The object part of the Hom functor is the Homf operation, which is just a functionalized version of Hom. That is, it is a two argument function, which maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
hof1fval | ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | eqid 2738 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
6 | 1, 2, 3, 4, 5 | hofval 17970 | . 2 ⊢ (𝜑 → 𝑀 = 〈(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝐶)(2nd ‘𝑦))𝑓))))〉) |
7 | fvex 6787 | . . 3 ⊢ (Homf ‘𝐶) ∈ V | |
8 | fvex 6787 | . . . . 5 ⊢ (Base‘𝐶) ∈ V | |
9 | 8, 8 | xpex 7603 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐶)) ∈ V |
10 | 9, 9 | mpoex 7920 | . . 3 ⊢ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝐶)(2nd ‘𝑦))𝑓)))) ∈ V |
11 | 7, 10 | op1std 7841 | . 2 ⊢ (𝑀 = 〈(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝐶)(2nd ‘𝑦))𝑓))))〉 → (1st ‘𝑀) = (Homf ‘𝐶)) |
12 | 6, 11 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 2nd c2nd 7830 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Homf chomf 17375 HomFchof 17966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-hof 17968 |
This theorem is referenced by: hof1 17972 |
Copyright terms: Public domain | W3C validator |