![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hof1fval | Structured version Visualization version GIF version |
Description: The object part of the Hom functor is the Homf operation, which is just a functionalized version of Hom. That is, it is a two argument function, which maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
hof1fval | ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | eqid 2733 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
6 | 1, 2, 3, 4, 5 | hofval 18146 | . 2 ⊢ (𝜑 → 𝑀 = ⟨(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(⟨(1st ‘𝑦), (1st ‘𝑥)⟩(comp‘𝐶)(2nd ‘𝑦))𝑓))))⟩) |
7 | fvex 6856 | . . 3 ⊢ (Homf ‘𝐶) ∈ V | |
8 | fvex 6856 | . . . . 5 ⊢ (Base‘𝐶) ∈ V | |
9 | 8, 8 | xpex 7688 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐶)) ∈ V |
10 | 9, 9 | mpoex 8013 | . . 3 ⊢ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(⟨(1st ‘𝑦), (1st ‘𝑥)⟩(comp‘𝐶)(2nd ‘𝑦))𝑓)))) ∈ V |
11 | 7, 10 | op1std 7932 | . 2 ⊢ (𝑀 = ⟨(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(⟨(1st ‘𝑦), (1st ‘𝑥)⟩(comp‘𝐶)(2nd ‘𝑦))𝑓))))⟩ → (1st ‘𝑀) = (Homf ‘𝐶)) |
12 | 6, 11 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⟨cop 4593 ↦ cmpt 5189 × cxp 5632 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 1st c1st 7920 2nd c2nd 7921 Basecbs 17088 Hom chom 17149 compcco 17150 Catccat 17549 Homf chomf 17551 HomFchof 18142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-hof 18144 |
This theorem is referenced by: hof1 18148 |
Copyright terms: Public domain | W3C validator |