| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hof1fval | Structured version Visualization version GIF version | ||
| Description: The object part of the Hom functor is the Homf operation, which is just a functionalized version of Hom. That is, it is a two argument function, which maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
| hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| hof1fval | ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
| 2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | hofval 18219 | . 2 ⊢ (𝜑 → 𝑀 = 〈(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝐶)(2nd ‘𝑦))𝑓))))〉) |
| 7 | fvex 6873 | . . 3 ⊢ (Homf ‘𝐶) ∈ V | |
| 8 | fvex 6873 | . . . . 5 ⊢ (Base‘𝐶) ∈ V | |
| 9 | 8, 8 | xpex 7731 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐶)) ∈ V |
| 10 | 9, 9 | mpoex 8060 | . . 3 ⊢ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝐶)(2nd ‘𝑦))𝑓)))) ∈ V |
| 11 | 7, 10 | op1std 7980 | . 2 ⊢ (𝑀 = 〈(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝐶)(2nd ‘𝑦))𝑓))))〉 → (1st ‘𝑀) = (Homf ‘𝐶)) |
| 12 | 6, 11 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 ↦ cmpt 5190 × cxp 5638 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 Homf chomf 17633 HomFchof 18215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-hof 18217 |
| This theorem is referenced by: hof1 18221 |
| Copyright terms: Public domain | W3C validator |