![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hof1fval | Structured version Visualization version GIF version |
Description: The object part of the Hom functor is the Homf operation, which is just a functionalized version of Hom. That is, it is a two argument function, which maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
hof1fval | ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
6 | 1, 2, 3, 4, 5 | hofval 18209 | . 2 ⊢ (𝜑 → 𝑀 = ⟨(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(⟨(1st ‘𝑦), (1st ‘𝑥)⟩(comp‘𝐶)(2nd ‘𝑦))𝑓))))⟩) |
7 | fvex 6903 | . . 3 ⊢ (Homf ‘𝐶) ∈ V | |
8 | fvex 6903 | . . . . 5 ⊢ (Base‘𝐶) ∈ V | |
9 | 8, 8 | xpex 7742 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐶)) ∈ V |
10 | 9, 9 | mpoex 8068 | . . 3 ⊢ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(⟨(1st ‘𝑦), (1st ‘𝑥)⟩(comp‘𝐶)(2nd ‘𝑦))𝑓)))) ∈ V |
11 | 7, 10 | op1std 7987 | . 2 ⊢ (𝑀 = ⟨(Homf ‘𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝐶)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd ‘𝑦))ℎ)(⟨(1st ‘𝑦), (1st ‘𝑥)⟩(comp‘𝐶)(2nd ‘𝑦))𝑓))))⟩ → (1st ‘𝑀) = (Homf ‘𝐶)) |
12 | 6, 11 | syl 17 | 1 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⟨cop 4633 ↦ cmpt 5230 × cxp 5673 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 1st c1st 7975 2nd c2nd 7976 Basecbs 17148 Hom chom 17212 compcco 17213 Catccat 17612 Homf chomf 17614 HomFchof 18205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-hof 18207 |
This theorem is referenced by: hof1 18211 |
Copyright terms: Public domain | W3C validator |