MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2fval Structured version   Visualization version   GIF version

Theorem hof2fval 17507
Description: The morphism part of the Hom functor, for morphisms 𝑓, 𝑔⟩:⟨𝑋, 𝑌⟩⟶⟨𝑍, 𝑊 (which since the first argument is contravariant means morphisms 𝑓:𝑍𝑋 and 𝑔:𝑌𝑊), yields a function (a morphism of SetCat) mapping :𝑋𝑌 to 𝑔𝑓:𝑍𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
hof2.z (𝜑𝑍𝐵)
hof2.w (𝜑𝑊𝐵)
hof2.o · = (comp‘𝐶)
Assertion
Ref Expression
hof2fval (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Distinct variable groups:   𝑓,𝑔,,𝐵   𝜑,𝑓,𝑔,   𝐶,𝑓,𝑔,   𝑓,𝐻,𝑔,   𝑓,𝑊,𝑔,   · ,𝑓,𝑔,   𝑓,𝑋,𝑔,   𝑓,𝑌,𝑔,   𝑓,𝑍,𝑔,
Allowed substitution hints:   𝑀(𝑓,𝑔,)

Proof of Theorem hof2fval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
3 hof1.b . . . 4 𝐵 = (Base‘𝐶)
4 hof1.h . . . 4 𝐻 = (Hom ‘𝐶)
5 hof2.o . . . 4 · = (comp‘𝐶)
61, 2, 3, 4, 5hofval 17504 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
7 fvex 6685 . . . 4 (Homf𝐶) ∈ V
83fvexi 6686 . . . . . 6 𝐵 ∈ V
98, 8xpex 7478 . . . . 5 (𝐵 × 𝐵) ∈ V
109, 9mpoex 7779 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))) ∈ V
117, 10op2ndd 7702 . . 3 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
126, 11syl 17 . 2 (𝜑 → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
13 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑦 = ⟨𝑍, 𝑊⟩)
1413fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = (1st ‘⟨𝑍, 𝑊⟩))
15 hof2.z . . . . . . 7 (𝜑𝑍𝐵)
16 hof2.w . . . . . . 7 (𝜑𝑊𝐵)
17 op1stg 7703 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
1815, 16, 17syl2anc 586 . . . . . 6 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
1918adantr 483 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
2014, 19eqtrd 2858 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = 𝑍)
21 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2221fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
23 hof1.x . . . . . . 7 (𝜑𝑋𝐵)
24 hof1.y . . . . . . 7 (𝜑𝑌𝐵)
25 op1stg 7703 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2623, 24, 25syl2anc 586 . . . . . 6 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2726adantr 483 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2822, 27eqtrd 2858 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = 𝑋)
2920, 28oveq12d 7176 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((1st𝑦)𝐻(1st𝑥)) = (𝑍𝐻𝑋))
3021fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
31 op2ndg 7704 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3223, 24, 31syl2anc 586 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3332adantr 483 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3430, 33eqtrd 2858 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = 𝑌)
3513fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = (2nd ‘⟨𝑍, 𝑊⟩))
36 op2ndg 7704 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3715, 16, 36syl2anc 586 . . . . . 6 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3837adantr 483 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3935, 38eqtrd 2858 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = 𝑊)
4034, 39oveq12d 7176 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑌𝐻𝑊))
4121fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
42 df-ov 7161 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
4341, 42syl6eqr 2876 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝑋𝐻𝑌))
4420, 28opeq12d 4813 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ⟨(1st𝑦), (1st𝑥)⟩ = ⟨𝑍, 𝑋⟩)
4544, 39oveq12d 7176 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)) = (⟨𝑍, 𝑋· 𝑊))
4621, 39oveq12d 7176 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑥 · (2nd𝑦)) = (⟨𝑋, 𝑌· 𝑊))
4746oveqd 7175 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑔(𝑥 · (2nd𝑦))) = (𝑔(⟨𝑋, 𝑌· 𝑊)))
48 eqidd 2824 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑓 = 𝑓)
4945, 47, 48oveq123d 7179 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓) = ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))
5043, 49mpteq12dv 5153 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓)))
5129, 40, 50mpoeq123dv 7231 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
5223, 24opelxpd 5595 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
5315, 16opelxpd 5595 . 2 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐵 × 𝐵))
54 ovex 7191 . . . 4 (𝑍𝐻𝑋) ∈ V
55 ovex 7191 . . . 4 (𝑌𝐻𝑊) ∈ V
5654, 55mpoex 7779 . . 3 (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V
5756a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V)
5812, 51, 52, 53, 57ovmpod 7304 1 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cop 4575  cmpt 5148   × cxp 5555  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937  Homf chomf 16939  HomFchof 17500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-hof 17502
This theorem is referenced by:  hof2val  17508
  Copyright terms: Public domain W3C validator