MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2fval Structured version   Visualization version   GIF version

Theorem hof2fval 18156
Description: The morphism part of the Hom functor, for morphisms 𝑓, 𝑔⟩:⟨𝑋, 𝑌⟩⟶⟨𝑍, 𝑊 (which since the first argument is contravariant means morphisms 𝑓:𝑍𝑋 and 𝑔:𝑌𝑊), yields a function (a morphism of SetCat) mapping :𝑋𝑌 to 𝑔𝑓:𝑍𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hof1.b 𝐵 = (Base‘𝐶)
hof1.h 𝐻 = (Hom ‘𝐶)
hof1.x (𝜑𝑋𝐵)
hof1.y (𝜑𝑌𝐵)
hof2.z (𝜑𝑍𝐵)
hof2.w (𝜑𝑊𝐵)
hof2.o · = (comp‘𝐶)
Assertion
Ref Expression
hof2fval (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Distinct variable groups:   𝑓,𝑔,,𝐵   𝜑,𝑓,𝑔,   𝐶,𝑓,𝑔,   𝑓,𝐻,𝑔,   𝑓,𝑊,𝑔,   · ,𝑓,𝑔,   𝑓,𝑋,𝑔,   𝑓,𝑌,𝑔,   𝑓,𝑍,𝑔,
Allowed substitution hints:   𝑀(𝑓,𝑔,)

Proof of Theorem hof2fval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . . 4 𝑀 = (HomF𝐶)
2 hofval.c . . . 4 (𝜑𝐶 ∈ Cat)
3 hof1.b . . . 4 𝐵 = (Base‘𝐶)
4 hof1.h . . . 4 𝐻 = (Hom ‘𝐶)
5 hof2.o . . . 4 · = (comp‘𝐶)
61, 2, 3, 4, 5hofval 18153 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
7 fvex 6830 . . . 4 (Homf𝐶) ∈ V
83fvexi 6831 . . . . . 6 𝐵 ∈ V
98, 8xpex 7681 . . . . 5 (𝐵 × 𝐵) ∈ V
109, 9mpoex 8006 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))) ∈ V
117, 10op2ndd 7927 . . 3 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
126, 11syl 17 . 2 (𝜑 → (2nd𝑀) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
13 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑦 = ⟨𝑍, 𝑊⟩)
1413fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = (1st ‘⟨𝑍, 𝑊⟩))
15 hof2.z . . . . . . 7 (𝜑𝑍𝐵)
16 hof2.w . . . . . . 7 (𝜑𝑊𝐵)
17 op1stg 7928 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
1815, 16, 17syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
2014, 19eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑦) = 𝑍)
21 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2221fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
23 hof1.x . . . . . . 7 (𝜑𝑋𝐵)
24 hof1.y . . . . . . 7 (𝜑𝑌𝐵)
25 op1stg 7928 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2623, 24, 25syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2726adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2822, 27eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (1st𝑥) = 𝑋)
2920, 28oveq12d 7359 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((1st𝑦)𝐻(1st𝑥)) = (𝑍𝐻𝑋))
3021fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
31 op2ndg 7929 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3223, 24, 31syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3332adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
3430, 33eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑥) = 𝑌)
3513fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = (2nd ‘⟨𝑍, 𝑊⟩))
36 op2ndg 7929 . . . . . . 7 ((𝑍𝐵𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3715, 16, 36syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
3935, 38eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (2nd𝑦) = 𝑊)
4034, 39oveq12d 7359 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑌𝐻𝑊))
4121fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
42 df-ov 7344 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
4341, 42eqtr4di 2784 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝐻𝑥) = (𝑋𝐻𝑌))
4420, 28opeq12d 4828 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ⟨(1st𝑦), (1st𝑥)⟩ = ⟨𝑍, 𝑋⟩)
4544, 39oveq12d 7359 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)) = (⟨𝑍, 𝑋· 𝑊))
4621, 39oveq12d 7359 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑥 · (2nd𝑦)) = (⟨𝑋, 𝑌· 𝑊))
4746oveqd 7358 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑔(𝑥 · (2nd𝑦))) = (𝑔(⟨𝑋, 𝑌· 𝑊)))
48 eqidd 2732 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → 𝑓 = 𝑓)
4945, 47, 48oveq123d 7362 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓) = ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))
5043, 49mpteq12dv 5173 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)) = ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓)))
5129, 40, 50mpoeq123dv 7416 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = ⟨𝑍, 𝑊⟩)) → (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
5223, 24opelxpd 5650 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
5315, 16opelxpd 5650 . 2 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐵 × 𝐵))
54 ovex 7374 . . . 4 (𝑍𝐻𝑋) ∈ V
55 ovex 7374 . . . 4 (𝑌𝐻𝑊) ∈ V
5654, 55mpoex 8006 . . 3 (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V
5756a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))) ∈ V)
5812, 51, 52, 53, 57ovmpod 7493 1 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ ( ∈ (𝑋𝐻𝑌) ↦ ((𝑔(⟨𝑋, 𝑌· 𝑊))(⟨𝑍, 𝑋· 𝑊)𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4577  cmpt 5167   × cxp 5609  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167  compcco 17168  Catccat 17565  Homf chomf 17567  HomFchof 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-hof 18151
This theorem is referenced by:  hof2val  18157
  Copyright terms: Public domain W3C validator