Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspval Structured version   Visualization version   GIF version

Theorem hoidifhspval 46768
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspval.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
hoidifhspval.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspval (𝜑 → (𝐷𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
Distinct variable groups:   𝑥,𝐾   𝑋,𝑎,𝑥   𝑌,𝑎,𝑥   𝑘,𝑌,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘,𝑎)   𝐷(𝑥,𝑘,𝑎)   𝐾(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem hoidifhspval
StepHypRef Expression
1 hoidifhspval.d . 2 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
2 breq1 5098 . . . . . 6 (𝑥 = 𝑌 → (𝑥 ≤ (𝑎𝑘) ↔ 𝑌 ≤ (𝑎𝑘)))
3 id 22 . . . . . 6 (𝑥 = 𝑌𝑥 = 𝑌)
42, 3ifbieq2d 4503 . . . . 5 (𝑥 = 𝑌 → if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥) = if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌))
54ifeq1d 4496 . . . 4 (𝑥 = 𝑌 → if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))
65mpteq2dv 5189 . . 3 (𝑥 = 𝑌 → (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘))) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘))))
76mpteq2dv 5189 . 2 (𝑥 = 𝑌 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
8 hoidifhspval.y . 2 (𝜑𝑌 ∈ ℝ)
9 ovex 7388 . . . 4 (ℝ ↑m 𝑋) ∈ V
109mptex 7166 . . 3 (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))) ∈ V
1110a1i 11 . 2 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))) ∈ V)
121, 7, 8, 11fvmptd3 6961 1 (𝜑 → (𝐷𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4476   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  m cmap 8759  cr 11016  cle 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358
This theorem is referenced by:  hoidifhspval2  46775
  Copyright terms: Public domain W3C validator