Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspval Structured version   Visualization version   GIF version

Theorem hoidifhspval 45809
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspval.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
hoidifhspval.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspval (𝜑 → (𝐷𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
Distinct variable groups:   𝑥,𝐾   𝑋,𝑎,𝑥   𝑌,𝑎,𝑥   𝑘,𝑌,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘,𝑎)   𝐷(𝑥,𝑘,𝑎)   𝐾(𝑘,𝑎)   𝑋(𝑘)

Proof of Theorem hoidifhspval
StepHypRef Expression
1 hoidifhspval.d . 2 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
2 breq1 5141 . . . . . 6 (𝑥 = 𝑌 → (𝑥 ≤ (𝑎𝑘) ↔ 𝑌 ≤ (𝑎𝑘)))
3 id 22 . . . . . 6 (𝑥 = 𝑌𝑥 = 𝑌)
42, 3ifbieq2d 4546 . . . . 5 (𝑥 = 𝑌 → if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥) = if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌))
54ifeq1d 4539 . . . 4 (𝑥 = 𝑌 → if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))
65mpteq2dv 5240 . . 3 (𝑥 = 𝑌 → (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘))) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘))))
76mpteq2dv 5240 . 2 (𝑥 = 𝑌 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
8 hoidifhspval.y . 2 (𝜑𝑌 ∈ ℝ)
9 ovex 7434 . . . 4 (ℝ ↑m 𝑋) ∈ V
109mptex 7216 . . 3 (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))) ∈ V
1110a1i 11 . 2 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))) ∈ V)
121, 7, 8, 11fvmptd3 7011 1 (𝜑 → (𝐷𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  ifcif 4520   class class class wbr 5138  cmpt 5221  cfv 6533  (class class class)co 7401  m cmap 8816  cr 11105  cle 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404
This theorem is referenced by:  hoidifhspval2  45816
  Copyright terms: Public domain W3C validator