| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval2 | Structured version Visualization version GIF version | ||
| Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoidifhspval2.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
| hoidifhspval2.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| hoidifhspval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hoidifhspval2.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoidifhspval2 | ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoidifhspval2.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
| 2 | hoidifhspval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 3 | 1, 2 | hoidifhspval 46654 | . 2 ⊢ (𝜑 → (𝐷‘𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))))) |
| 4 | fveq1 6821 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
| 5 | 4 | breq2d 5101 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑌 ≤ (𝑎‘𝑘) ↔ 𝑌 ≤ (𝐴‘𝑘))) |
| 6 | 5, 4 | ifbieq1d 4497 | . . . . 5 ⊢ (𝑎 = 𝐴 → if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌) = if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌)) |
| 7 | 6, 4 | ifeq12d 4494 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘)) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) |
| 8 | 7 | mpteq2dv 5183 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
| 10 | hoidifhspval2.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 11 | reex 11097 | . . . . . 6 ⊢ ℝ ∈ V | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ∈ V) |
| 13 | hoidifhspval2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | 12, 13 | jca 511 | . . . 4 ⊢ (𝜑 → (ℝ ∈ V ∧ 𝑋 ∈ 𝑉)) |
| 15 | elmapg 8763 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
| 17 | 10, 16 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
| 18 | mptexg 7155 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) ∈ V) | |
| 19 | 13, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) ∈ V) |
| 20 | 3, 9, 17, 19 | fvmptd 6936 | 1 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11005 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: hoidifhspf 46664 hoidifhspval3 46665 |
| Copyright terms: Public domain | W3C validator |