![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval2 | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspval2.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspval2.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspval2.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidifhspval2 | ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspval2.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
2 | hoidifhspval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
3 | 1, 2 | hoidifhspval 46134 | . 2 ⊢ (𝜑 → (𝐷‘𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))))) |
4 | fveq1 6895 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
5 | 4 | breq2d 5161 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑌 ≤ (𝑎‘𝑘) ↔ 𝑌 ≤ (𝐴‘𝑘))) |
6 | 5, 4 | ifbieq1d 4554 | . . . . 5 ⊢ (𝑎 = 𝐴 → if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌) = if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌)) |
7 | 6, 4 | ifeq12d 4551 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘)) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) |
8 | 7 | mpteq2dv 5251 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
9 | 8 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
10 | hoidifhspval2.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
11 | reex 11231 | . . . . . 6 ⊢ ℝ ∈ V | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ∈ V) |
13 | hoidifhspval2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | 12, 13 | jca 510 | . . . 4 ⊢ (𝜑 → (ℝ ∈ V ∧ 𝑋 ∈ 𝑉)) |
15 | elmapg 8858 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
17 | 10, 16 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
18 | mptexg 7233 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) ∈ V) | |
19 | 13, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) ∈ V) |
20 | 3, 9, 17, 19 | fvmptd 7011 | 1 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ifcif 4530 class class class wbr 5149 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ↑m cmap 8845 ℝcr 11139 ≤ cle 11281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 |
This theorem is referenced by: hoidifhspf 46144 hoidifhspval3 46145 |
Copyright terms: Public domain | W3C validator |