Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval2 | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspval2.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspval2.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspval2.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidifhspval2 | ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspval2.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
2 | hoidifhspval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
3 | 1, 2 | hoidifhspval 44146 | . 2 ⊢ (𝜑 → (𝐷‘𝑌) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))))) |
4 | fveq1 6773 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
5 | 4 | breq2d 5086 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑌 ≤ (𝑎‘𝑘) ↔ 𝑌 ≤ (𝐴‘𝑘))) |
6 | 5, 4 | ifbieq1d 4483 | . . . . 5 ⊢ (𝑎 = 𝐴 → if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌) = if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌)) |
7 | 6, 4 | ifeq12d 4480 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘)) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) |
8 | 7 | mpteq2dv 5176 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑌), (𝑎‘𝑘))) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
10 | hoidifhspval2.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
11 | reex 10962 | . . . . . 6 ⊢ ℝ ∈ V | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ∈ V) |
13 | hoidifhspval2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | 12, 13 | jca 512 | . . . 4 ⊢ (𝜑 → (ℝ ∈ V ∧ 𝑋 ∈ 𝑉)) |
15 | elmapg 8628 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
17 | 10, 16 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
18 | mptexg 7097 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) ∈ V) | |
19 | 13, 18 | syl 17 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) ∈ V) |
20 | 3, 9, 17, 19 | fvmptd 6882 | 1 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 |
This theorem is referenced by: hoidifhspf 44156 hoidifhspval3 44157 |
Copyright terms: Public domain | W3C validator |