![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hstnmoc | Structured version Visualization version GIF version |
Description: Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstnmoc | โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ (((normโโ(๐โ๐ด))โ2) + ((normโโ(๐โ(โฅโ๐ด)))โ2)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstoc 31206 | . . . 4 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((๐โ๐ด) +โ (๐โ(โฅโ๐ด))) = (๐โ โ)) | |
2 | 1 | fveq2d 6851 | . . 3 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ (normโโ((๐โ๐ด) +โ (๐โ(โฅโ๐ด)))) = (normโโ(๐โ โ))) |
3 | 2 | oveq1d 7377 | . 2 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((normโโ((๐โ๐ด) +โ (๐โ(โฅโ๐ด))))โ2) = ((normโโ(๐โ โ))โ2)) |
4 | hstcl 31201 | . . . 4 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ (๐โ๐ด) โ โ) | |
5 | choccl 30290 | . . . . 5 โข (๐ด โ Cโ โ (โฅโ๐ด) โ Cโ ) | |
6 | hstcl 31201 | . . . . 5 โข ((๐ โ CHStates โง (โฅโ๐ด) โ Cโ ) โ (๐โ(โฅโ๐ด)) โ โ) | |
7 | 5, 6 | sylan2 594 | . . . 4 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ (๐โ(โฅโ๐ด)) โ โ) |
8 | 4, 7 | jca 513 | . . 3 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((๐โ๐ด) โ โ โง (๐โ(โฅโ๐ด)) โ โ)) |
9 | 5 | adantl 483 | . . . . 5 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ (โฅโ๐ด) โ Cโ ) |
10 | chsh 30208 | . . . . . . 7 โข (๐ด โ Cโ โ ๐ด โ Sโ ) | |
11 | shococss 30278 | . . . . . . 7 โข (๐ด โ Sโ โ ๐ด โ (โฅโ(โฅโ๐ด))) | |
12 | 10, 11 | syl 17 | . . . . . 6 โข (๐ด โ Cโ โ ๐ด โ (โฅโ(โฅโ๐ด))) |
13 | 12 | adantl 483 | . . . . 5 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ๐ด โ (โฅโ(โฅโ๐ด))) |
14 | 9, 13 | jca 513 | . . . 4 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((โฅโ๐ด) โ Cโ โง ๐ด โ (โฅโ(โฅโ๐ด)))) |
15 | hstorth 31204 | . . . 4 โข (((๐ โ CHStates โง ๐ด โ Cโ ) โง ((โฅโ๐ด) โ Cโ โง ๐ด โ (โฅโ(โฅโ๐ด)))) โ ((๐โ๐ด) ยทih (๐โ(โฅโ๐ด))) = 0) | |
16 | 14, 15 | mpdan 686 | . . 3 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((๐โ๐ด) ยทih (๐โ(โฅโ๐ด))) = 0) |
17 | normpyth 30129 | . . 3 โข (((๐โ๐ด) โ โ โง (๐โ(โฅโ๐ด)) โ โ) โ (((๐โ๐ด) ยทih (๐โ(โฅโ๐ด))) = 0 โ ((normโโ((๐โ๐ด) +โ (๐โ(โฅโ๐ด))))โ2) = (((normโโ(๐โ๐ด))โ2) + ((normโโ(๐โ(โฅโ๐ด)))โ2)))) | |
18 | 8, 16, 17 | sylc 65 | . 2 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((normโโ((๐โ๐ด) +โ (๐โ(โฅโ๐ด))))โ2) = (((normโโ(๐โ๐ด))โ2) + ((normโโ(๐โ(โฅโ๐ด)))โ2))) |
19 | hst1a 31202 | . . . . 5 โข (๐ โ CHStates โ (normโโ(๐โ โ)) = 1) | |
20 | 19 | oveq1d 7377 | . . . 4 โข (๐ โ CHStates โ ((normโโ(๐โ โ))โ2) = (1โ2)) |
21 | sq1 14106 | . . . 4 โข (1โ2) = 1 | |
22 | 20, 21 | eqtrdi 2793 | . . 3 โข (๐ โ CHStates โ ((normโโ(๐โ โ))โ2) = 1) |
23 | 22 | adantr 482 | . 2 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ ((normโโ(๐โ โ))โ2) = 1) |
24 | 3, 18, 23 | 3eqtr3d 2785 | 1 โข ((๐ โ CHStates โง ๐ด โ Cโ ) โ (((normโโ(๐โ๐ด))โ2) + ((normโโ(๐โ(โฅโ๐ด)))โ2)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 โ wss 3915 โcfv 6501 (class class class)co 7362 0cc0 11058 1c1 11059 + caddc 11061 2c2 12215 โcexp 13974 โchba 29903 +โ cva 29904 ยทih csp 29906 normโcno 29907 Sโ csh 29912 Cโ cch 29913 โฅcort 29914 CHStateschst 29947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 ax-addf 11137 ax-mulf 11138 ax-hilex 29983 ax-hfvadd 29984 ax-hvcom 29985 ax-hvass 29986 ax-hv0cl 29987 ax-hvaddid 29988 ax-hfvmul 29989 ax-hvmulid 29990 ax-hvmulass 29991 ax-hvdistr1 29992 ax-hvdistr2 29993 ax-hvmul0 29994 ax-hfi 30063 ax-his1 30066 ax-his2 30067 ax-his3 30068 ax-his4 30069 ax-hcompl 30186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-supp 8098 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-map 8774 df-pm 8775 df-ixp 8843 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fsupp 9313 df-fi 9354 df-sup 9385 df-inf 9386 df-oi 9453 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-uz 12771 df-q 12881 df-rp 12923 df-xneg 13040 df-xadd 13041 df-xmul 13042 df-ioo 13275 df-icc 13278 df-fz 13432 df-fzo 13575 df-seq 13914 df-exp 13975 df-hash 14238 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-clim 15377 df-sum 15578 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-starv 17155 df-sca 17156 df-vsca 17157 df-ip 17158 df-tset 17159 df-ple 17160 df-ds 17162 df-unif 17163 df-hom 17164 df-cco 17165 df-rest 17311 df-topn 17312 df-0g 17330 df-gsum 17331 df-topgen 17332 df-pt 17333 df-prds 17336 df-xrs 17391 df-qtop 17396 df-imas 17397 df-xps 17399 df-mre 17473 df-mrc 17474 df-acs 17476 df-mgm 18504 df-sgrp 18553 df-mnd 18564 df-submnd 18609 df-mulg 18880 df-cntz 19104 df-cmn 19571 df-psmet 20804 df-xmet 20805 df-met 20806 df-bl 20807 df-mopn 20808 df-cnfld 20813 df-top 22259 df-topon 22276 df-topsp 22298 df-bases 22312 df-cn 22594 df-cnp 22595 df-lm 22596 df-haus 22682 df-tx 22929 df-hmeo 23122 df-xms 23689 df-ms 23690 df-tms 23691 df-cau 24636 df-grpo 29477 df-gid 29478 df-ginv 29479 df-gdiv 29480 df-ablo 29529 df-vc 29543 df-nv 29576 df-va 29579 df-ba 29580 df-sm 29581 df-0v 29582 df-vs 29583 df-nmcv 29584 df-ims 29585 df-dip 29685 df-hnorm 29952 df-hvsub 29955 df-hlim 29956 df-hcau 29957 df-sh 30191 df-ch 30205 df-oc 30236 df-ch0 30237 df-chj 30294 df-hst 31196 |
This theorem is referenced by: hstle1 31210 hst1h 31211 hstle 31214 |
Copyright terms: Public domain | W3C validator |