Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hstnmoc | Structured version Visualization version GIF version |
Description: Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstnmoc | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstoc 30119 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | |
2 | 1 | fveq2d 6668 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴)))) = (normℎ‘(𝑆‘ ℋ))) |
3 | 2 | oveq1d 7172 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))))↑2) = ((normℎ‘(𝑆‘ ℋ))↑2)) |
4 | hstcl 30114 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
5 | choccl 29203 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
6 | hstcl 30114 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
7 | 5, 6 | sylan2 595 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
8 | 4, 7 | jca 515 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) ∈ ℋ ∧ (𝑆‘(⊥‘𝐴)) ∈ ℋ)) |
9 | 5 | adantl 485 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (⊥‘𝐴) ∈ Cℋ ) |
10 | chsh 29121 | . . . . . . 7 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
11 | shococss 29191 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Cℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
13 | 12 | adantl 485 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
14 | 9, 13 | jca 515 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((⊥‘𝐴) ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘(⊥‘𝐴)))) |
15 | hstorth 30117 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ((⊥‘𝐴) ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘(⊥‘𝐴)))) → ((𝑆‘𝐴) ·ih (𝑆‘(⊥‘𝐴))) = 0) | |
16 | 14, 15 | mpdan 686 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) ·ih (𝑆‘(⊥‘𝐴))) = 0) |
17 | normpyth 29042 | . . 3 ⊢ (((𝑆‘𝐴) ∈ ℋ ∧ (𝑆‘(⊥‘𝐴)) ∈ ℋ) → (((𝑆‘𝐴) ·ih (𝑆‘(⊥‘𝐴))) = 0 → ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)))) | |
18 | 8, 16, 17 | sylc 65 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
19 | hst1a 30115 | . . . . 5 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | |
20 | 19 | oveq1d 7172 | . . . 4 ⊢ (𝑆 ∈ CHStates → ((normℎ‘(𝑆‘ ℋ))↑2) = (1↑2)) |
21 | sq1 13622 | . . . 4 ⊢ (1↑2) = 1 | |
22 | 20, 21 | eqtrdi 2810 | . . 3 ⊢ (𝑆 ∈ CHStates → ((normℎ‘(𝑆‘ ℋ))↑2) = 1) |
23 | 22 | adantr 484 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘ ℋ))↑2) = 1) |
24 | 3, 18, 23 | 3eqtr3d 2802 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ⊆ wss 3861 ‘cfv 6341 (class class class)co 7157 0cc0 10589 1c1 10590 + caddc 10592 2c2 11743 ↑cexp 13493 ℋchba 28816 +ℎ cva 28817 ·ih csp 28819 normℎcno 28820 Sℋ csh 28825 Cℋ cch 28826 ⊥cort 28827 CHStateschst 28860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 ax-mulf 10669 ax-hilex 28896 ax-hfvadd 28897 ax-hvcom 28898 ax-hvass 28899 ax-hv0cl 28900 ax-hvaddid 28901 ax-hfvmul 28902 ax-hvmulid 28903 ax-hvmulass 28904 ax-hvdistr1 28905 ax-hvdistr2 28906 ax-hvmul0 28907 ax-hfi 28976 ax-his1 28979 ax-his2 28980 ax-his3 28981 ax-his4 28982 ax-hcompl 29099 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-fi 8922 df-sup 8953 df-inf 8954 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-q 12403 df-rp 12445 df-xneg 12562 df-xadd 12563 df-xmul 12564 df-ioo 12797 df-icc 12800 df-fz 12954 df-fzo 13097 df-seq 13433 df-exp 13494 df-hash 13755 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-clim 14907 df-sum 15105 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-starv 16653 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-unif 16661 df-hom 16662 df-cco 16663 df-rest 16769 df-topn 16770 df-0g 16788 df-gsum 16789 df-topgen 16790 df-pt 16791 df-prds 16794 df-xrs 16848 df-qtop 16853 df-imas 16854 df-xps 16856 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-mulg 18307 df-cntz 18529 df-cmn 18990 df-psmet 20173 df-xmet 20174 df-met 20175 df-bl 20176 df-mopn 20177 df-cnfld 20182 df-top 21609 df-topon 21626 df-topsp 21648 df-bases 21661 df-cn 21942 df-cnp 21943 df-lm 21944 df-haus 22030 df-tx 22277 df-hmeo 22470 df-xms 23037 df-ms 23038 df-tms 23039 df-cau 23971 df-grpo 28390 df-gid 28391 df-ginv 28392 df-gdiv 28393 df-ablo 28442 df-vc 28456 df-nv 28489 df-va 28492 df-ba 28493 df-sm 28494 df-0v 28495 df-vs 28496 df-nmcv 28497 df-ims 28498 df-dip 28598 df-hnorm 28865 df-hvsub 28868 df-hlim 28869 df-hcau 28870 df-sh 29104 df-ch 29118 df-oc 29149 df-ch0 29150 df-chj 29207 df-hst 30109 |
This theorem is referenced by: hstle1 30123 hst1h 30124 hstle 30127 |
Copyright terms: Public domain | W3C validator |