Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmapvalvalN | Structured version Visualization version GIF version |
Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hvmapval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hvmapval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hvmapval.v | ⊢ 𝑉 = (Base‘𝑈) |
hvmapval.p | ⊢ + = (+g‘𝑈) |
hvmapval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hvmapval.z | ⊢ 0 = (0g‘𝑈) |
hvmapval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
hvmapval.r | ⊢ 𝑅 = (Base‘𝑆) |
hvmapval.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
hvmapval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
hvmapval.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hvmapval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
hvmapvalvalN | ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hvmapval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hvmapval.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
4 | hvmapval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hvmapval.p | . . . 4 ⊢ + = (+g‘𝑈) | |
6 | hvmapval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | hvmapval.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
8 | hvmapval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | hvmapval.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
10 | hvmapval.m | . . . 4 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
11 | hvmapval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
12 | hvmapval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | hvmapval 39701 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))) |
14 | 13 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌)) |
15 | hvmapval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
16 | riotaex 7216 | . . 3 ⊢ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V | |
17 | eqeq1 2742 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋)))) | |
18 | 17 | rexbidv 3225 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
19 | 18 | riotabidv 7214 | . . . 4 ⊢ (𝑦 = 𝑌 → (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
20 | eqid 2738 | . . . 4 ⊢ (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) | |
21 | 19, 20 | fvmptg 6855 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
22 | 15, 16, 21 | sylancl 585 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
23 | 14, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LHypclh 37925 DVecHcdvh 39019 ocHcoch 39288 HVMapchvm 39697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-hvmap 39698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |