Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapvalvalN Structured version   Visualization version   GIF version

Theorem hvmapvalvalN 41726
Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hvmapval.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hvmapvalvalN (𝜑 → ((𝑀𝑋)‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
Distinct variable groups:   𝑡,𝑗,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊   𝑗,𝑋,𝑡   𝑗,𝑌,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐴(𝑡,𝑗)   + (𝑡,𝑗)   𝑅(𝑡)   𝑆(𝑡,𝑗)   · (𝑡,𝑗)   𝑈(𝑡,𝑗)   𝐻(𝑡,𝑗)   𝑀(𝑡,𝑗)   𝑂(𝑗)   𝑉(𝑡,𝑗)   0 (𝑡,𝑗)

Proof of Theorem hvmapvalvalN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
12 hvmapval.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hvmapval 41725 . . 3 (𝜑 → (𝑀𝑋) = (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))))
1413fveq1d 6877 . 2 (𝜑 → ((𝑀𝑋)‘𝑌) = ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌))
15 hvmapval.y . . 3 (𝜑𝑌𝑉)
16 riotaex 7364 . . 3 (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V
17 eqeq1 2739 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋))))
1817rexbidv 3164 . . . . 5 (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
1918riotabidv 7362 . . . 4 (𝑦 = 𝑌 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
20 eqid 2735 . . . 4 (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))
2119, 20fvmptg 6983 . . 3 ((𝑌𝑉 ∧ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
2215, 16, 21sylancl 586 . 2 (𝜑 → ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
2314, 22eqtrd 2770 1 (𝜑 → ((𝑀𝑋)‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  cdif 3923  {csn 4601  cmpt 5201  cfv 6530  crio 7359  (class class class)co 7403  Basecbs 17226  +gcplusg 17269  Scalarcsca 17272   ·𝑠 cvsca 17273  0gc0g 17451  LHypclh 39949  DVecHcdvh 41043  ocHcoch 41312  HVMapchvm 41721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-hvmap 41722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator