Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapvalvalN Structured version   Visualization version   GIF version

Theorem hvmapvalvalN 40224
Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hvmapval.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hvmapvalvalN (𝜑 → ((𝑀𝑋)‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
Distinct variable groups:   𝑡,𝑗,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊   𝑗,𝑋,𝑡   𝑗,𝑌,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐴(𝑡,𝑗)   + (𝑡,𝑗)   𝑅(𝑡)   𝑆(𝑡,𝑗)   · (𝑡,𝑗)   𝑈(𝑡,𝑗)   𝐻(𝑡,𝑗)   𝑀(𝑡,𝑗)   𝑂(𝑗)   𝑉(𝑡,𝑗)   0 (𝑡,𝑗)

Proof of Theorem hvmapvalvalN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
12 hvmapval.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hvmapval 40223 . . 3 (𝜑 → (𝑀𝑋) = (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))))
1413fveq1d 6844 . 2 (𝜑 → ((𝑀𝑋)‘𝑌) = ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌))
15 hvmapval.y . . 3 (𝜑𝑌𝑉)
16 riotaex 7317 . . 3 (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V
17 eqeq1 2740 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋))))
1817rexbidv 3175 . . . . 5 (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
1918riotabidv 7315 . . . 4 (𝑦 = 𝑌 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
20 eqid 2736 . . . 4 (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))
2119, 20fvmptg 6946 . . 3 ((𝑌𝑉 ∧ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
2215, 16, 21sylancl 586 . 2 (𝜑 → ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
2314, 22eqtrd 2776 1 (𝜑 → ((𝑀𝑋)‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  cdif 3907  {csn 4586  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  LHypclh 38447  DVecHcdvh 39541  ocHcoch 39810  HVMapchvm 40219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-hvmap 40220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator