| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmapvalvalN | Structured version Visualization version GIF version | ||
| Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hvmapval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hvmapval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hvmapval.v | ⊢ 𝑉 = (Base‘𝑈) |
| hvmapval.p | ⊢ + = (+g‘𝑈) |
| hvmapval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hvmapval.z | ⊢ 0 = (0g‘𝑈) |
| hvmapval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| hvmapval.r | ⊢ 𝑅 = (Base‘𝑆) |
| hvmapval.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
| hvmapval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
| hvmapval.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hvmapval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hvmapvalvalN | ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hvmapval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hvmapval.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 4 | hvmapval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | hvmapval.p | . . . 4 ⊢ + = (+g‘𝑈) | |
| 6 | hvmapval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 7 | hvmapval.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 8 | hvmapval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 9 | hvmapval.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
| 10 | hvmapval.m | . . . 4 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
| 11 | hvmapval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
| 12 | hvmapval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | hvmapval 41761 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))) |
| 14 | 13 | fveq1d 6863 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌)) |
| 15 | hvmapval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 16 | riotaex 7351 | . . 3 ⊢ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V | |
| 17 | eqeq1 2734 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋)))) | |
| 18 | 17 | rexbidv 3158 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 19 | 18 | riotabidv 7349 | . . . 4 ⊢ (𝑦 = 𝑌 → (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 20 | eqid 2730 | . . . 4 ⊢ (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) | |
| 21 | 19, 20 | fvmptg 6969 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 22 | 15, 16, 21 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 23 | 14, 22 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 {csn 4592 ↦ cmpt 5191 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 LHypclh 39985 DVecHcdvh 41079 ocHcoch 41348 HVMapchvm 41757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-hvmap 41758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |