Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapvalvalN Structured version   Visualization version   GIF version

Theorem hvmapvalvalN 39469
Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hvmapval.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hvmapvalvalN (𝜑 → ((𝑀𝑋)‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
Distinct variable groups:   𝑡,𝑗,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊   𝑗,𝑋,𝑡   𝑗,𝑌,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐴(𝑡,𝑗)   + (𝑡,𝑗)   𝑅(𝑡)   𝑆(𝑡,𝑗)   · (𝑡,𝑗)   𝑈(𝑡,𝑗)   𝐻(𝑡,𝑗)   𝑀(𝑡,𝑗)   𝑂(𝑗)   𝑉(𝑡,𝑗)   0 (𝑡,𝑗)

Proof of Theorem hvmapvalvalN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
12 hvmapval.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hvmapval 39468 . . 3 (𝜑 → (𝑀𝑋) = (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))))
1413fveq1d 6708 . 2 (𝜑 → ((𝑀𝑋)‘𝑌) = ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌))
15 hvmapval.y . . 3 (𝜑𝑌𝑉)
16 riotaex 7163 . . 3 (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V
17 eqeq1 2738 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋))))
1817rexbidv 3209 . . . . 5 (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
1918riotabidv 7161 . . . 4 (𝑦 = 𝑌 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
20 eqid 2734 . . . 4 (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))
2119, 20fvmptg 6805 . . 3 ((𝑌𝑉 ∧ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
2215, 16, 21sylancl 589 . 2 (𝜑 → ((𝑦𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
2314, 22eqtrd 2774 1 (𝜑 → ((𝑀𝑋)‘𝑌) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3055  Vcvv 3401  cdif 3854  {csn 4531  cmpt 5124  cfv 6369  crio 7158  (class class class)co 7202  Basecbs 16684  +gcplusg 16767  Scalarcsca 16770   ·𝑠 cvsca 16771  0gc0g 16916  LHypclh 37692  DVecHcdvh 38786  ocHcoch 39055  HVMapchvm 39464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-hvmap 39465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator