Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapvalvalN Structured version   Visualization version   GIF version

Theorem hvmapvalvalN 40632
Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHypβ€˜πΎ)
hvmapval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hvmapval.o 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
hvmapval.v 𝑉 = (Baseβ€˜π‘ˆ)
hvmapval.p + = (+gβ€˜π‘ˆ)
hvmapval.t Β· = ( ·𝑠 β€˜π‘ˆ)
hvmapval.z 0 = (0gβ€˜π‘ˆ)
hvmapval.s 𝑆 = (Scalarβ€˜π‘ˆ)
hvmapval.r 𝑅 = (Baseβ€˜π‘†)
hvmapval.m 𝑀 = ((HVMapβ€˜πΎ)β€˜π‘Š)
hvmapval.k (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
hvmapval.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
hvmapval.y (πœ‘ β†’ π‘Œ ∈ 𝑉)
Assertion
Ref Expression
hvmapvalvalN (πœ‘ β†’ ((π‘€β€˜π‘‹)β€˜π‘Œ) = (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
Distinct variable groups:   𝑑,𝑗,𝐾   𝑑,π‘Š   𝑑,𝑂   𝑅,𝑗   𝑗,π‘Š   𝑗,𝑋,𝑑   𝑗,π‘Œ,𝑑
Allowed substitution hints:   πœ‘(𝑑,𝑗)   𝐴(𝑑,𝑗)   + (𝑑,𝑗)   𝑅(𝑑)   𝑆(𝑑,𝑗)   Β· (𝑑,𝑗)   π‘ˆ(𝑑,𝑗)   𝐻(𝑑,𝑗)   𝑀(𝑑,𝑗)   𝑂(𝑗)   𝑉(𝑑,𝑗)   0 (𝑑,𝑗)

Proof of Theorem hvmapvalvalN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 hvmapval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hvmapval.o . . . 4 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
4 hvmapval.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
5 hvmapval.p . . . 4 + = (+gβ€˜π‘ˆ)
6 hvmapval.t . . . 4 Β· = ( ·𝑠 β€˜π‘ˆ)
7 hvmapval.z . . . 4 0 = (0gβ€˜π‘ˆ)
8 hvmapval.s . . . 4 𝑆 = (Scalarβ€˜π‘ˆ)
9 hvmapval.r . . . 4 𝑅 = (Baseβ€˜π‘†)
10 hvmapval.m . . . 4 𝑀 = ((HVMapβ€˜πΎ)β€˜π‘Š)
11 hvmapval.k . . . 4 (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
12 hvmapval.x . . . 4 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hvmapval 40631 . . 3 (πœ‘ β†’ (π‘€β€˜π‘‹) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋)))))
1413fveq1d 6894 . 2 (πœ‘ β†’ ((π‘€β€˜π‘‹)β€˜π‘Œ) = ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋))))β€˜π‘Œ))
15 hvmapval.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑉)
16 riotaex 7369 . . 3 (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))) ∈ V
17 eqeq1 2737 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑦 = (𝑑 + (𝑗 Β· 𝑋)) ↔ π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
1817rexbidv 3179 . . . . 5 (𝑦 = π‘Œ β†’ (βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋)) ↔ βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
1918riotabidv 7367 . . . 4 (𝑦 = π‘Œ β†’ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋))) = (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
20 eqid 2733 . . . 4 (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋)))) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋))))
2119, 20fvmptg 6997 . . 3 ((π‘Œ ∈ 𝑉 ∧ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))) ∈ V) β†’ ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋))))β€˜π‘Œ) = (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
2215, 16, 21sylancl 587 . 2 (πœ‘ β†’ ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑦 = (𝑑 + (𝑗 Β· 𝑋))))β€˜π‘Œ) = (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
2314, 22eqtrd 2773 1 (πœ‘ β†’ ((π‘€β€˜π‘‹)β€˜π‘Œ) = (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})π‘Œ = (𝑑 + (𝑗 Β· 𝑋))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  Vcvv 3475   βˆ– cdif 3946  {csn 4629   ↦ cmpt 5232  β€˜cfv 6544  β„©crio 7364  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  Scalarcsca 17200   ·𝑠 cvsca 17201  0gc0g 17385  LHypclh 38855  DVecHcdvh 39949  ocHcoch 40218  HVMapchvm 40627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-hvmap 40628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator