Step | Hyp | Ref
| Expression |
1 | | hvmapval.h |
. . . 4
β’ π» = (LHypβπΎ) |
2 | | hvmapval.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
3 | | hvmapval.o |
. . . 4
β’ π = ((ocHβπΎ)βπ) |
4 | | hvmapval.v |
. . . 4
β’ π = (Baseβπ) |
5 | | hvmapval.p |
. . . 4
β’ + =
(+gβπ) |
6 | | hvmapval.t |
. . . 4
β’ Β· = (
Β·π βπ) |
7 | | hvmapval.z |
. . . 4
β’ 0 =
(0gβπ) |
8 | | hvmapval.s |
. . . 4
β’ π = (Scalarβπ) |
9 | | hvmapval.r |
. . . 4
β’ π
= (Baseβπ) |
10 | | hvmapval.m |
. . . 4
β’ π = ((HVMapβπΎ)βπ) |
11 | | hvmapval.k |
. . . 4
β’ (π β (πΎ β π΄ β§ π β π»)) |
12 | | hvmapval.x |
. . . 4
β’ (π β π β (π β { 0 })) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | hvmapval 40631 |
. . 3
β’ (π β (πβπ) = (π¦ β π β¦ (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π))))) |
14 | 13 | fveq1d 6894 |
. 2
β’ (π β ((πβπ)βπ) = ((π¦ β π β¦ (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π))))βπ)) |
15 | | hvmapval.y |
. . 3
β’ (π β π β π) |
16 | | riotaex 7369 |
. . 3
β’
(β©π
β π
βπ‘ β (πβ{π})π = (π‘ + (π Β· π))) β V |
17 | | eqeq1 2737 |
. . . . . 6
β’ (π¦ = π β (π¦ = (π‘ + (π Β· π)) β π = (π‘ + (π Β· π)))) |
18 | 17 | rexbidv 3179 |
. . . . 5
β’ (π¦ = π β (βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π)) β βπ‘ β (πβ{π})π = (π‘ + (π Β· π)))) |
19 | 18 | riotabidv 7367 |
. . . 4
β’ (π¦ = π β (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π))) = (β©π β π
βπ‘ β (πβ{π})π = (π‘ + (π Β· π)))) |
20 | | eqid 2733 |
. . . 4
β’ (π¦ β π β¦ (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π)))) = (π¦ β π β¦ (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π)))) |
21 | 19, 20 | fvmptg 6997 |
. . 3
β’ ((π β π β§ (β©π β π
βπ‘ β (πβ{π})π = (π‘ + (π Β· π))) β V) β ((π¦ β π β¦ (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π))))βπ) = (β©π β π
βπ‘ β (πβ{π})π = (π‘ + (π Β· π)))) |
22 | 15, 16, 21 | sylancl 587 |
. 2
β’ (π β ((π¦ β π β¦ (β©π β π
βπ‘ β (πβ{π})π¦ = (π‘ + (π Β· π))))βπ) = (β©π β π
βπ‘ β (πβ{π})π = (π‘ + (π Β· π)))) |
23 | 14, 22 | eqtrd 2773 |
1
β’ (π β ((πβπ)βπ) = (β©π β π
βπ‘ β (πβ{π})π = (π‘ + (π Β· π)))) |