| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmapvalvalN | Structured version Visualization version GIF version | ||
| Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hvmapval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hvmapval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hvmapval.v | ⊢ 𝑉 = (Base‘𝑈) |
| hvmapval.p | ⊢ + = (+g‘𝑈) |
| hvmapval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hvmapval.z | ⊢ 0 = (0g‘𝑈) |
| hvmapval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| hvmapval.r | ⊢ 𝑅 = (Base‘𝑆) |
| hvmapval.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
| hvmapval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
| hvmapval.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hvmapval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hvmapvalvalN | ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hvmapval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hvmapval.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 4 | hvmapval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | hvmapval.p | . . . 4 ⊢ + = (+g‘𝑈) | |
| 6 | hvmapval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 7 | hvmapval.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 8 | hvmapval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 9 | hvmapval.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
| 10 | hvmapval.m | . . . 4 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
| 11 | hvmapval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
| 12 | hvmapval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | hvmapval 41932 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))) |
| 14 | 13 | fveq1d 6833 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌)) |
| 15 | hvmapval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 16 | riotaex 7316 | . . 3 ⊢ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V | |
| 17 | eqeq1 2737 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋)))) | |
| 18 | 17 | rexbidv 3157 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 19 | 18 | riotabidv 7314 | . . . 4 ⊢ (𝑦 = 𝑌 → (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 20 | eqid 2733 | . . . 4 ⊢ (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) | |
| 21 | 19, 20 | fvmptg 6936 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 22 | 15, 16, 21 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| 23 | 14, 22 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 {csn 4577 ↦ cmpt 5176 ‘cfv 6489 ℩crio 7311 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 LHypclh 40156 DVecHcdvh 41250 ocHcoch 41519 HVMapchvm 41928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-hvmap 41929 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |