Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapval Structured version   Visualization version   GIF version

Theorem hvmapval 39701
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hvmapval (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Distinct variable groups:   𝑡,𝑗,𝑣,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊,𝑣   𝑣,𝑉   𝑗,𝑋,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑡,𝑗)   𝐴(𝑣,𝑡,𝑗)   + (𝑣,𝑡,𝑗)   𝑅(𝑣,𝑡)   𝑆(𝑣,𝑡,𝑗)   · (𝑣,𝑡,𝑗)   𝑈(𝑣,𝑡,𝑗)   𝐻(𝑣,𝑡,𝑗)   𝑀(𝑣,𝑡,𝑗)   𝑂(𝑣,𝑗)   𝑉(𝑡,𝑗)   0 (𝑣,𝑡,𝑗)

Proof of Theorem hvmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hvmapfval 39700 . . 3 (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
1312fveq1d 6758 . 2 (𝜑 → (𝑀𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋))
14 hvmapval.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
154fvexi 6770 . . . 4 𝑉 ∈ V
1615mptex 7081 . . 3 (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V
17 sneq 4568 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1817fveq2d 6760 . . . . . . 7 (𝑥 = 𝑋 → (𝑂‘{𝑥}) = (𝑂‘{𝑋}))
19 oveq2 7263 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑗 · 𝑥) = (𝑗 · 𝑋))
2019oveq2d 7271 . . . . . . . 8 (𝑥 = 𝑋 → (𝑡 + (𝑗 · 𝑥)) = (𝑡 + (𝑗 · 𝑋)))
2120eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑋 → (𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑋))))
2218, 21rexeqbidv 3328 . . . . . 6 (𝑥 = 𝑋 → (∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2322riotabidv 7214 . . . . 5 (𝑥 = 𝑋 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2423mpteq2dv 5172 . . . 4 (𝑥 = 𝑋 → (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
25 eqid 2738 . . . 4 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))
2624, 25fvmptg 6855 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V) → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2714, 16, 26sylancl 585 . 2 (𝜑 → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2813, 27eqtrd 2778 1 (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cdif 3880  {csn 4558  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LHypclh 37925  DVecHcdvh 39019  ocHcoch 39288  HVMapchvm 39697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-hvmap 39698
This theorem is referenced by:  hvmapvalvalN  39702  hvmapidN  39703  hdmapevec2  39777
  Copyright terms: Public domain W3C validator