![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmapval | Structured version Visualization version GIF version |
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) |
Ref | Expression |
---|---|
hvmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hvmapval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hvmapval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hvmapval.v | ⊢ 𝑉 = (Base‘𝑈) |
hvmapval.p | ⊢ + = (+g‘𝑈) |
hvmapval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hvmapval.z | ⊢ 0 = (0g‘𝑈) |
hvmapval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
hvmapval.r | ⊢ 𝑅 = (Base‘𝑆) |
hvmapval.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
hvmapval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
hvmapval.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
hvmapval | ⊢ (𝜑 → (𝑀‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hvmapval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hvmapval.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
4 | hvmapval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hvmapval.p | . . . 4 ⊢ + = (+g‘𝑈) | |
6 | hvmapval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | hvmapval.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
8 | hvmapval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | hvmapval.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
10 | hvmapval.m | . . . 4 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
11 | hvmapval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hvmapfval 41716 | . . 3 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))) |
13 | 12 | fveq1d 6922 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋)) |
14 | hvmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
15 | 4 | fvexi 6934 | . . . 4 ⊢ 𝑉 ∈ V |
16 | 15 | mptex 7260 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V |
17 | sneq 4658 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
18 | 17 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑂‘{𝑥}) = (𝑂‘{𝑋})) |
19 | oveq2 7456 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑗 · 𝑥) = (𝑗 · 𝑋)) | |
20 | 19 | oveq2d 7464 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑡 + (𝑗 · 𝑥)) = (𝑡 + (𝑗 · 𝑋))) |
21 | 20 | eqeq2d 2751 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑋)))) |
22 | 18, 21 | rexeqbidv 3355 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) |
23 | 22 | riotabidv 7406 | . . . . 5 ⊢ (𝑥 = 𝑋 → (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) |
24 | 23 | mpteq2dv 5268 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
25 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) | |
26 | 24, 25 | fvmptg 7027 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V) → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
27 | 14, 16, 26 | sylancl 585 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
28 | 13, 27 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 {csn 4648 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LHypclh 39941 DVecHcdvh 41035 ocHcoch 41304 HVMapchvm 41713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-hvmap 41714 |
This theorem is referenced by: hvmapvalvalN 41718 hvmapidN 41719 hdmapevec2 41793 |
Copyright terms: Public domain | W3C validator |