Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapval Structured version   Visualization version   GIF version

Theorem hvmapval 40626
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHypβ€˜πΎ)
hvmapval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hvmapval.o 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
hvmapval.v 𝑉 = (Baseβ€˜π‘ˆ)
hvmapval.p + = (+gβ€˜π‘ˆ)
hvmapval.t Β· = ( ·𝑠 β€˜π‘ˆ)
hvmapval.z 0 = (0gβ€˜π‘ˆ)
hvmapval.s 𝑆 = (Scalarβ€˜π‘ˆ)
hvmapval.r 𝑅 = (Baseβ€˜π‘†)
hvmapval.m 𝑀 = ((HVMapβ€˜πΎ)β€˜π‘Š)
hvmapval.k (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
hvmapval.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
Assertion
Ref Expression
hvmapval (πœ‘ β†’ (π‘€β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))))
Distinct variable groups:   𝑑,𝑗,𝑣,𝐾   𝑑,π‘Š   𝑑,𝑂   𝑅,𝑗   𝑗,π‘Š,𝑣   𝑣,𝑉   𝑗,𝑋,𝑑,𝑣
Allowed substitution hints:   πœ‘(𝑣,𝑑,𝑗)   𝐴(𝑣,𝑑,𝑗)   + (𝑣,𝑑,𝑗)   𝑅(𝑣,𝑑)   𝑆(𝑣,𝑑,𝑗)   Β· (𝑣,𝑑,𝑗)   π‘ˆ(𝑣,𝑑,𝑗)   𝐻(𝑣,𝑑,𝑗)   𝑀(𝑣,𝑑,𝑗)   𝑂(𝑣,𝑗)   𝑉(𝑑,𝑗)   0 (𝑣,𝑑,𝑗)

Proof of Theorem hvmapval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 hvmapval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hvmapval.o . . . 4 𝑂 = ((ocHβ€˜πΎ)β€˜π‘Š)
4 hvmapval.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
5 hvmapval.p . . . 4 + = (+gβ€˜π‘ˆ)
6 hvmapval.t . . . 4 Β· = ( ·𝑠 β€˜π‘ˆ)
7 hvmapval.z . . . 4 0 = (0gβ€˜π‘ˆ)
8 hvmapval.s . . . 4 𝑆 = (Scalarβ€˜π‘ˆ)
9 hvmapval.r . . . 4 𝑅 = (Baseβ€˜π‘†)
10 hvmapval.m . . . 4 𝑀 = ((HVMapβ€˜πΎ)β€˜π‘Š)
11 hvmapval.k . . . 4 (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hvmapfval 40625 . . 3 (πœ‘ β†’ 𝑀 = (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯))))))
1312fveq1d 6893 . 2 (πœ‘ β†’ (π‘€β€˜π‘‹) = ((π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯)))))β€˜π‘‹))
14 hvmapval.x . . 3 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
154fvexi 6905 . . . 4 𝑉 ∈ V
1615mptex 7224 . . 3 (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))) ∈ V
17 sneq 4638 . . . . . . . 8 (π‘₯ = 𝑋 β†’ {π‘₯} = {𝑋})
1817fveq2d 6895 . . . . . . 7 (π‘₯ = 𝑋 β†’ (π‘‚β€˜{π‘₯}) = (π‘‚β€˜{𝑋}))
19 oveq2 7416 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (𝑗 Β· π‘₯) = (𝑗 Β· 𝑋))
2019oveq2d 7424 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (𝑑 + (𝑗 Β· π‘₯)) = (𝑑 + (𝑗 Β· 𝑋)))
2120eqeq2d 2743 . . . . . . 7 (π‘₯ = 𝑋 β†’ (𝑣 = (𝑑 + (𝑗 Β· π‘₯)) ↔ 𝑣 = (𝑑 + (𝑗 Β· 𝑋))))
2218, 21rexeqbidv 3343 . . . . . 6 (π‘₯ = 𝑋 β†’ (βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯)) ↔ βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋))))
2322riotabidv 7366 . . . . 5 (π‘₯ = 𝑋 β†’ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯))) = (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋))))
2423mpteq2dv 5250 . . . 4 (π‘₯ = 𝑋 β†’ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))))
25 eqid 2732 . . . 4 (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯))))) = (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯)))))
2624, 25fvmptg 6996 . . 3 ((𝑋 ∈ (𝑉 βˆ– { 0 }) ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))) ∈ V) β†’ ((π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯)))))β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))))
2714, 16, 26sylancl 586 . 2 (πœ‘ β†’ ((π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{π‘₯})𝑣 = (𝑑 + (𝑗 Β· π‘₯)))))β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))))
2813, 27eqtrd 2772 1 (πœ‘ β†’ (π‘€β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 βˆƒπ‘‘ ∈ (π‘‚β€˜{𝑋})𝑣 = (𝑑 + (𝑗 Β· 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3945  {csn 4628   ↦ cmpt 5231  β€˜cfv 6543  β„©crio 7363  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17384  LHypclh 38850  DVecHcdvh 39944  ocHcoch 40213  HVMapchvm 40622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-hvmap 40623
This theorem is referenced by:  hvmapvalvalN  40627  hvmapidN  40628  hdmapevec2  40702
  Copyright terms: Public domain W3C validator