Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapval Structured version   Visualization version   GIF version

Theorem hvmapval 39055
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hvmapval (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Distinct variable groups:   𝑡,𝑗,𝑣,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊,𝑣   𝑣,𝑉   𝑗,𝑋,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑡,𝑗)   𝐴(𝑣,𝑡,𝑗)   + (𝑣,𝑡,𝑗)   𝑅(𝑣,𝑡)   𝑆(𝑣,𝑡,𝑗)   · (𝑣,𝑡,𝑗)   𝑈(𝑣,𝑡,𝑗)   𝐻(𝑣,𝑡,𝑗)   𝑀(𝑣,𝑡,𝑗)   𝑂(𝑣,𝑗)   𝑉(𝑡,𝑗)   0 (𝑣,𝑡,𝑗)

Proof of Theorem hvmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hvmapfval 39054 . . 3 (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
1312fveq1d 6651 . 2 (𝜑 → (𝑀𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋))
14 hvmapval.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
154fvexi 6663 . . . 4 𝑉 ∈ V
1615mptex 6967 . . 3 (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V
17 sneq 4538 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1817fveq2d 6653 . . . . . . 7 (𝑥 = 𝑋 → (𝑂‘{𝑥}) = (𝑂‘{𝑋}))
19 oveq2 7147 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑗 · 𝑥) = (𝑗 · 𝑋))
2019oveq2d 7155 . . . . . . . 8 (𝑥 = 𝑋 → (𝑡 + (𝑗 · 𝑥)) = (𝑡 + (𝑗 · 𝑋)))
2120eqeq2d 2812 . . . . . . 7 (𝑥 = 𝑋 → (𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑋))))
2218, 21rexeqbidv 3358 . . . . . 6 (𝑥 = 𝑋 → (∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2322riotabidv 7099 . . . . 5 (𝑥 = 𝑋 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2423mpteq2dv 5129 . . . 4 (𝑥 = 𝑋 → (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
25 eqid 2801 . . . 4 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))
2624, 25fvmptg 6747 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V) → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2714, 16, 26sylancl 589 . 2 (𝜑 → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2813, 27eqtrd 2836 1 (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wrex 3110  Vcvv 3444  cdif 3881  {csn 4528  cmpt 5113  cfv 6328  crio 7096  (class class class)co 7139  Basecbs 16479  +gcplusg 16561  Scalarcsca 16564   ·𝑠 cvsca 16565  0gc0g 16709  LHypclh 37279  DVecHcdvh 38373  ocHcoch 38642  HVMapchvm 39051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-hvmap 39052
This theorem is referenced by:  hvmapvalvalN  39056  hvmapidN  39057  hdmapevec2  39131
  Copyright terms: Public domain W3C validator