Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapval Structured version   Visualization version   GIF version

Theorem hvmapval 41754
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hvmapval.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
hvmapval (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Distinct variable groups:   𝑡,𝑗,𝑣,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑗,𝑊,𝑣   𝑣,𝑉   𝑗,𝑋,𝑡,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑡,𝑗)   𝐴(𝑣,𝑡,𝑗)   + (𝑣,𝑡,𝑗)   𝑅(𝑣,𝑡)   𝑆(𝑣,𝑡,𝑗)   · (𝑣,𝑡,𝑗)   𝑈(𝑣,𝑡,𝑗)   𝐻(𝑣,𝑡,𝑗)   𝑀(𝑣,𝑡,𝑗)   𝑂(𝑣,𝑗)   𝑉(𝑡,𝑗)   0 (𝑣,𝑡,𝑗)

Proof of Theorem hvmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hvmapval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hvmapval.o . . . 4 𝑂 = ((ocH‘𝐾)‘𝑊)
4 hvmapval.v . . . 4 𝑉 = (Base‘𝑈)
5 hvmapval.p . . . 4 + = (+g𝑈)
6 hvmapval.t . . . 4 · = ( ·𝑠𝑈)
7 hvmapval.z . . . 4 0 = (0g𝑈)
8 hvmapval.s . . . 4 𝑆 = (Scalar‘𝑈)
9 hvmapval.r . . . 4 𝑅 = (Base‘𝑆)
10 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
11 hvmapval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hvmapfval 41753 . . 3 (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
1312fveq1d 6860 . 2 (𝜑 → (𝑀𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋))
14 hvmapval.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
154fvexi 6872 . . . 4 𝑉 ∈ V
1615mptex 7197 . . 3 (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V
17 sneq 4599 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1817fveq2d 6862 . . . . . . 7 (𝑥 = 𝑋 → (𝑂‘{𝑥}) = (𝑂‘{𝑋}))
19 oveq2 7395 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑗 · 𝑥) = (𝑗 · 𝑋))
2019oveq2d 7403 . . . . . . . 8 (𝑥 = 𝑋 → (𝑡 + (𝑗 · 𝑥)) = (𝑡 + (𝑗 · 𝑋)))
2120eqeq2d 2740 . . . . . . 7 (𝑥 = 𝑋 → (𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑋))))
2218, 21rexeqbidv 3320 . . . . . 6 (𝑥 = 𝑋 → (∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2322riotabidv 7346 . . . . 5 (𝑥 = 𝑋 → (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))
2423mpteq2dv 5201 . . . 4 (𝑥 = 𝑋 → (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
25 eqid 2729 . . . 4 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))
2624, 25fvmptg 6966 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V) → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2714, 16, 26sylancl 586 . 2 (𝜑 → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
2813, 27eqtrd 2764 1 (𝜑 → (𝑀𝑋) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  {csn 4589  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LHypclh 39978  DVecHcdvh 41072  ocHcoch 41341  HVMapchvm 41750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-hvmap 41751
This theorem is referenced by:  hvmapvalvalN  41755  hvmapidN  41756  hdmapevec2  41830
  Copyright terms: Public domain W3C validator