Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmapval | Structured version Visualization version GIF version |
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) |
Ref | Expression |
---|---|
hvmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hvmapval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hvmapval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hvmapval.v | ⊢ 𝑉 = (Base‘𝑈) |
hvmapval.p | ⊢ + = (+g‘𝑈) |
hvmapval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hvmapval.z | ⊢ 0 = (0g‘𝑈) |
hvmapval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
hvmapval.r | ⊢ 𝑅 = (Base‘𝑆) |
hvmapval.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
hvmapval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
hvmapval.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
hvmapval | ⊢ (𝜑 → (𝑀‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hvmapval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hvmapval.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
4 | hvmapval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hvmapval.p | . . . 4 ⊢ + = (+g‘𝑈) | |
6 | hvmapval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | hvmapval.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
8 | hvmapval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | hvmapval.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
10 | hvmapval.m | . . . 4 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
11 | hvmapval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hvmapfval 40078 | . . 3 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))) |
13 | 12 | fveq1d 6836 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋)) |
14 | hvmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
15 | 4 | fvexi 6848 | . . . 4 ⊢ 𝑉 ∈ V |
16 | 15 | mptex 7164 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V |
17 | sneq 4591 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
18 | 17 | fveq2d 6838 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑂‘{𝑥}) = (𝑂‘{𝑋})) |
19 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑗 · 𝑥) = (𝑗 · 𝑋)) | |
20 | 19 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑡 + (𝑗 · 𝑥)) = (𝑡 + (𝑗 · 𝑋))) |
21 | 20 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑋)))) |
22 | 18, 21 | rexeqbidv 3318 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) |
23 | 22 | riotabidv 7304 | . . . . 5 ⊢ (𝑥 = 𝑋 → (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) |
24 | 23 | mpteq2dv 5202 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
25 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) | |
26 | 24, 25 | fvmptg 6938 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋)))) ∈ V) → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
27 | 14, 16, 26 | sylancl 587 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
28 | 13, 27 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑣 = (𝑡 + (𝑗 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 Vcvv 3443 ∖ cdif 3902 {csn 4581 ↦ cmpt 5183 ‘cfv 6488 ℩crio 7301 (class class class)co 7346 Basecbs 17014 +gcplusg 17064 Scalarcsca 17067 ·𝑠 cvsca 17068 0gc0g 17252 LHypclh 38303 DVecHcdvh 39397 ocHcoch 39666 HVMapchvm 40075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pr 5379 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-hvmap 40076 |
This theorem is referenced by: hvmapvalvalN 40080 hvmapidN 40081 hdmapevec2 40155 |
Copyright terms: Public domain | W3C validator |