![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gtinf | Structured version Visualization version GIF version |
Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
gtinf | ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → 𝐴 ∈ ℝ) | |
2 | simprr 772 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → inf(𝑆, ℝ, < ) < 𝐴) | |
3 | ltso 11324 | . . . 4 ⊢ < Or ℝ | |
4 | 3 | a1i 11 | . . 3 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → < Or ℝ) |
5 | infm3 12203 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | |
6 | 5 | adantr 480 | . . 3 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
7 | 4, 6 | infglb 9513 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ((𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴)) |
8 | 1, 2, 7 | mp2and 698 | 1 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 ∅c0 4323 class class class wbr 5148 Or wor 5589 infcinf 9464 ℝcr 11137 < clt 11278 ≤ cle 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |