Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtinf Structured version   Visualization version   GIF version

Theorem gtinf 36332
Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
gtinf (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
Distinct variable groups:   𝑧,𝐴   𝑥,𝑦,𝑧,𝑆
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem gtinf
StepHypRef Expression
1 simprl 770 . 2 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → 𝐴 ∈ ℝ)
2 simprr 772 . 2 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → inf(𝑆, ℝ, < ) < 𝐴)
3 ltso 11185 . . . 4 < Or ℝ
43a1i 11 . . 3 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → < Or ℝ)
5 infm3 12073 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
65adantr 480 . . 3 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
74, 6infglb 9370 . 2 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ((𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴) → ∃𝑧𝑆 𝑧 < 𝐴))
81, 2, 7mp2and 699 1 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2110  wne 2926  wral 3045  wrex 3054  wss 3900  c0 4281   class class class wbr 5089   Or wor 5521  infcinf 9320  cr 10997   < clt 11138  cle 11139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator