| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gtinf | Structured version Visualization version GIF version | ||
| Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| gtinf | ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → 𝐴 ∈ ℝ) | |
| 2 | simprr 772 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → inf(𝑆, ℝ, < ) < 𝐴) | |
| 3 | ltso 11185 | . . . 4 ⊢ < Or ℝ | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → < Or ℝ) |
| 5 | infm3 12073 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
| 7 | 4, 6 | infglb 9370 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ((𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧 ∈ 𝑆 𝑧 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 ∅c0 4281 class class class wbr 5089 Or wor 5521 infcinf 9320 ℝcr 10997 < clt 11138 ≤ cle 11139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |