Step | Hyp | Ref
| Expression |
1 | | 1zzd 12281 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ∈ ℤ) |
2 | | ballotth.m |
. . . . . . . 8
⊢ 𝑀 ∈ ℕ |
3 | | ballotth.n |
. . . . . . . 8
⊢ 𝑁 ∈ ℕ |
4 | | nnaddcl 11926 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
5 | 2, 3, 4 | mp2an 688 |
. . . . . . 7
⊢ (𝑀 + 𝑁) ∈ ℕ |
6 | 5 | nnzi 12274 |
. . . . . 6
⊢ (𝑀 + 𝑁) ∈ ℤ |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝑀 + 𝑁) ∈ ℤ) |
8 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
9 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
10 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
11 | | ballotth.e |
. . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
12 | | ballotth.mgtn |
. . . . . . . . 9
⊢ 𝑁 < 𝑀 |
13 | | ballotth.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
14 | | ballotth.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
15 | 2, 3, 8, 9, 10, 11, 12, 13, 14 | ballotlemsdom 32378 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
16 | 15 | elfzelzd 13186 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
17 | 16 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
18 | 17, 1 | zsubcld 12360 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ∈
ℤ) |
19 | 2, 3, 8, 9, 10, 11, 12, 13, 14 | ballotlemsgt1 32377 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 < ((𝑆‘𝐶)‘𝐽)) |
20 | | zltlem1 12303 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ ((𝑆‘𝐶)‘𝐽) ∈ ℤ) → (1 < ((𝑆‘𝐶)‘𝐽) ↔ 1 ≤ (((𝑆‘𝐶)‘𝐽) − 1))) |
21 | 20 | biimpa 476 |
. . . . . 6
⊢ (((1
∈ ℤ ∧ ((𝑆‘𝐶)‘𝐽) ∈ ℤ) ∧ 1 < ((𝑆‘𝐶)‘𝐽)) → 1 ≤ (((𝑆‘𝐶)‘𝐽) − 1)) |
22 | 1, 17, 19, 21 | syl21anc 834 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ≤ (((𝑆‘𝐶)‘𝐽) − 1)) |
23 | 17 | zred 12355 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ∈ ℝ) |
24 | | 1red 10907 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ∈ ℝ) |
25 | 23, 24 | resubcld 11333 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ∈
ℝ) |
26 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐶 ∈ (𝑂 ∖ 𝐸)) |
27 | 2, 3, 8, 9, 10, 11, 12, 13 | ballotlemiex 32368 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
28 | 27 | simpld 494 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
29 | | elfzelz 13185 |
. . . . . . . 8
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) |
30 | 26, 28, 29 | 3syl 18 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝐼‘𝐶) ∈ ℤ) |
31 | 30 | zred 12355 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝐼‘𝐶) ∈ ℝ) |
32 | 7 | zred 12355 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝑀 + 𝑁) ∈ ℝ) |
33 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ ℤ) |
34 | 33 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
35 | | elfzle1 13188 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽) |
36 | 35 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ≤ 𝐽) |
37 | 34 | zred 12355 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ∈ ℝ) |
38 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 < (𝐼‘𝐶)) |
39 | 37, 31, 38 | ltled 11053 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ≤ (𝐼‘𝐶)) |
40 | 1, 30, 34, 36, 39 | elfzd 13176 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ∈ (1...(𝐼‘𝐶))) |
41 | 2, 3, 8, 9, 10, 11, 12, 13, 14 | ballotlemsel1i 32379 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |
42 | 26, 40, 41 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |
43 | | elfzle2 13189 |
. . . . . . . . 9
⊢ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶)) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶)) |
45 | | zlem1lt 12302 |
. . . . . . . . 9
⊢ ((((𝑆‘𝐶)‘𝐽) ∈ ℤ ∧ (𝐼‘𝐶) ∈ ℤ) → (((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶))) |
46 | 17, 30, 45 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶))) |
47 | 44, 46 | mpbid 231 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶)) |
48 | 25, 31, 47 | ltled 11053 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ≤ (𝐼‘𝐶)) |
49 | | elfzle2 13189 |
. . . . . . 7
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
50 | 26, 28, 49 | 3syl 18 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
51 | 25, 31, 32, 48, 50 | letrd 11062 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ≤ (𝑀 + 𝑁)) |
52 | 1, 7, 18, 22, 51 | elfzd 13176 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁))) |
53 | | biid 260 |
. . . . . . . . 9
⊢ ((((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶)) |
54 | 47, 53 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶)) |
55 | 2, 3, 8, 9, 10, 11, 12, 13 | ballotlemi 32367 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
56 | 55 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
57 | 56 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
58 | 54, 57 | mpbid 231 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
59 | | ltso 10986 |
. . . . . . . . . 10
⊢ < Or
ℝ |
60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → < Or ℝ) |
61 | 2, 3, 8, 9, 10, 11, 12, 13 | ballotlemsup 32371 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤))) |
62 | 60, 61 | inflb 9178 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} → ¬ (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
63 | 62 | con2d 134 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ) → ¬ (((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0})) |
64 | 26, 58, 63 | sylc 65 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ¬ (((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}) |
65 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑘 = (((𝑆‘𝐶)‘𝐽) − 1) → (((𝐹‘𝐶)‘𝑘) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
66 | 65 | elrab 3617 |
. . . . . 6
⊢ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ↔ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
67 | 64, 66 | sylnib 327 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ¬ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
68 | | imnan 399 |
. . . . 5
⊢
(((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0) ↔ ¬ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
69 | 67, 68 | sylibr 233 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
70 | 52, 69 | mpd 15 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ¬ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0) |
71 | 70 | neqned 2949 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ≠ 0) |
72 | | ballotth.r |
. . . . . . . . . 10
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
73 | 2, 3, 8, 9, 10, 11, 12, 13, 14, 72 | ballotlemro 32389 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
74 | 73 | adantr 480 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑅‘𝐶) ∈ 𝑂) |
75 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
76 | 75 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
77 | 2, 3, 8, 9, 10, 74, 76 | ballotlemfelz 32357 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℤ) |
78 | 77 | zcnd 12356 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℂ) |
79 | 78 | negeq0d 11254 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘(𝑅‘𝐶))‘𝐽) = 0 ↔ -((𝐹‘(𝑅‘𝐶))‘𝐽) = 0)) |
80 | | eqid 2738 |
. . . . . . 7
⊢ (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
81 | 2, 3, 8, 9, 10, 11, 12, 13, 14, 72, 80 | ballotlemfrceq 32395 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽)) |
82 | 81 | eqeq1d 2740 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0 ↔ -((𝐹‘(𝑅‘𝐶))‘𝐽) = 0)) |
83 | 79, 82 | bitr4d 281 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘(𝑅‘𝐶))‘𝐽) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
84 | 83 | necon3bid 2987 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ≠ 0)) |
85 | 26, 40, 84 | syl2anc 583 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ≠ 0)) |
86 | 71, 85 | mpbird 256 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0) |