Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrcn0 Structured version   Visualization version   GIF version

Theorem ballotlemfrcn0 34521
Description: Value of 𝐹 for a reversed counting (𝑅𝐶), before the first tie, cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2017.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemfrcn0 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfrcn0
Dummy variables 𝑣 𝑢 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12564 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ∈ ℤ)
2 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
3 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
4 nnaddcl 12209 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
52, 3, 4mp2an 692 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
65nnzi 12557 . . . . . 6 (𝑀 + 𝑁) ∈ ℤ
76a1i 11 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℤ)
8 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
9 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
11 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
12 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
13 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
14 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
152, 3, 8, 9, 10, 11, 12, 13, 14ballotlemsdom 34503 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
1615elfzelzd 13486 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
17163adant3 1132 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
1817, 1zsubcld 12643 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℤ)
192, 3, 8, 9, 10, 11, 12, 13, 14ballotlemsgt1 34502 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 < ((𝑆𝐶)‘𝐽))
20 zltlem1 12586 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑆𝐶)‘𝐽) ∈ ℤ) → (1 < ((𝑆𝐶)‘𝐽) ↔ 1 ≤ (((𝑆𝐶)‘𝐽) − 1)))
2120biimpa 476 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑆𝐶)‘𝐽) ∈ ℤ) ∧ 1 < ((𝑆𝐶)‘𝐽)) → 1 ≤ (((𝑆𝐶)‘𝐽) − 1))
221, 17, 19, 21syl21anc 837 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ≤ (((𝑆𝐶)‘𝐽) − 1))
2317zred 12638 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ∈ ℝ)
24 1red 11175 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ∈ ℝ)
2523, 24resubcld 11606 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℝ)
26 simp1 1136 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐶 ∈ (𝑂𝐸))
272, 3, 8, 9, 10, 11, 12, 13ballotlemiex 34493 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2827simpld 494 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
29 elfzelz 13485 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
3026, 28, 293syl 18 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
3130zred 12638 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝐼𝐶) ∈ ℝ)
327zred 12638 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℝ)
33 elfzelz 13485 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ ℤ)
34333ad2ant2 1134 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ∈ ℤ)
35 elfzle1 13488 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽)
36353ad2ant2 1134 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ≤ 𝐽)
3734zred 12638 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ∈ ℝ)
38 simp3 1138 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 < (𝐼𝐶))
3937, 31, 38ltled 11322 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
401, 30, 34, 36, 39elfzd 13476 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ∈ (1...(𝐼𝐶)))
412, 3, 8, 9, 10, 11, 12, 13, 14ballotlemsel1i 34504 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
4226, 40, 41syl2anc 584 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
43 elfzle2 13489 . . . . . . . . 9 (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶))
4442, 43syl 17 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶))
45 zlem1lt 12585 . . . . . . . . 9 ((((𝑆𝐶)‘𝐽) ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶)))
4617, 30, 45syl2anc 584 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶)))
4744, 46mpbid 232 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶))
4825, 31, 47ltled 11322 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ≤ (𝐼𝐶))
49 elfzle2 13489 . . . . . . 7 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
5026, 28, 493syl 18 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
5125, 31, 32, 48, 50letrd 11331 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ≤ (𝑀 + 𝑁))
521, 7, 18, 22, 51elfzd 13476 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)))
53 biid 261 . . . . . . . . 9 ((((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶))
5447, 53sylibr 234 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶))
552, 3, 8, 9, 10, 11, 12, 13ballotlemi 34492 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
5655breq2d 5119 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
57563ad2ant1 1133 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
5854, 57mpbid 232 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
59 ltso 11254 . . . . . . . . . 10 < Or ℝ
6059a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → < Or ℝ)
612, 3, 8, 9, 10, 11, 12, 13ballotlemsup 34496 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
6260, 61inflb 9441 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
6362con2d 134 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ) → ¬ (((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}))
6426, 58, 63sylc 65 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ¬ (((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0})
65 fveqeq2 6867 . . . . . . 7 (𝑘 = (((𝑆𝐶)‘𝐽) − 1) → (((𝐹𝐶)‘𝑘) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
6665elrab 3659 . . . . . 6 ((((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
6764, 66sylnib 328 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ¬ ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
68 imnan 399 . . . . 5 (((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0) ↔ ¬ ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
6967, 68sylibr 234 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
7052, 69mpd 15 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ¬ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0)
7170neqned 2932 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ≠ 0)
72 ballotth.r . . . . . . . . . 10 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
732, 3, 8, 9, 10, 11, 12, 13, 14, 72ballotlemro 34514 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
7473adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
75 elfzelz 13485 . . . . . . . . 9 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
7675adantl 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
772, 3, 8, 9, 10, 74, 76ballotlemfelz 34482 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℤ)
7877zcnd 12639 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ)
7978negeq0d 11525 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹‘(𝑅𝐶))‘𝐽) = 0 ↔ -((𝐹‘(𝑅𝐶))‘𝐽) = 0))
80 eqid 2729 . . . . . . 7 (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
812, 3, 8, 9, 10, 11, 12, 13, 14, 72, 80ballotlemfrceq 34520 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
8281eqeq1d 2731 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0 ↔ -((𝐹‘(𝑅𝐶))‘𝐽) = 0))
8379, 82bitr4d 282 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹‘(𝑅𝐶))‘𝐽) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
8483necon3bid 2969 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ≠ 0))
8526, 40, 84syl2anc 584 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ≠ 0))
8671, 85mpbird 257 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  cin 3913  ifcif 4488  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188   Or wor 5545  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  cz 12529  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-hash 14296
This theorem is referenced by:  ballotlemirc  34523
  Copyright terms: Public domain W3C validator