| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 12628 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ∈ ℤ) |
| 2 | | ballotth.m |
. . . . . . . 8
⊢ 𝑀 ∈ ℕ |
| 3 | | ballotth.n |
. . . . . . . 8
⊢ 𝑁 ∈ ℕ |
| 4 | | nnaddcl 12268 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
| 5 | 2, 3, 4 | mp2an 692 |
. . . . . . 7
⊢ (𝑀 + 𝑁) ∈ ℕ |
| 6 | 5 | nnzi 12621 |
. . . . . 6
⊢ (𝑀 + 𝑁) ∈ ℤ |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝑀 + 𝑁) ∈ ℤ) |
| 8 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| 9 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| 10 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
| 11 | | ballotth.e |
. . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 12 | | ballotth.mgtn |
. . . . . . . . 9
⊢ 𝑁 < 𝑀 |
| 13 | | ballotth.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 14 | | ballotth.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 15 | 2, 3, 8, 9, 10, 11, 12, 13, 14 | ballotlemsdom 34549 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
| 16 | 15 | elfzelzd 13547 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
| 17 | 16 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
| 18 | 17, 1 | zsubcld 12707 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ∈
ℤ) |
| 19 | 2, 3, 8, 9, 10, 11, 12, 13, 14 | ballotlemsgt1 34548 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 < ((𝑆‘𝐶)‘𝐽)) |
| 20 | | zltlem1 12650 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ ((𝑆‘𝐶)‘𝐽) ∈ ℤ) → (1 < ((𝑆‘𝐶)‘𝐽) ↔ 1 ≤ (((𝑆‘𝐶)‘𝐽) − 1))) |
| 21 | 20 | biimpa 476 |
. . . . . 6
⊢ (((1
∈ ℤ ∧ ((𝑆‘𝐶)‘𝐽) ∈ ℤ) ∧ 1 < ((𝑆‘𝐶)‘𝐽)) → 1 ≤ (((𝑆‘𝐶)‘𝐽) − 1)) |
| 22 | 1, 17, 19, 21 | syl21anc 837 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ≤ (((𝑆‘𝐶)‘𝐽) − 1)) |
| 23 | 17 | zred 12702 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ∈ ℝ) |
| 24 | | 1red 11241 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ∈ ℝ) |
| 25 | 23, 24 | resubcld 11670 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ∈
ℝ) |
| 26 | | simp1 1136 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐶 ∈ (𝑂 ∖ 𝐸)) |
| 27 | 2, 3, 8, 9, 10, 11, 12, 13 | ballotlemiex 34539 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 28 | 27 | simpld 494 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 29 | | elfzelz 13546 |
. . . . . . . 8
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) |
| 30 | 26, 28, 29 | 3syl 18 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝐼‘𝐶) ∈ ℤ) |
| 31 | 30 | zred 12702 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝐼‘𝐶) ∈ ℝ) |
| 32 | 7 | zred 12702 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝑀 + 𝑁) ∈ ℝ) |
| 33 | | elfzelz 13546 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ ℤ) |
| 34 | 33 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
| 35 | | elfzle1 13549 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽) |
| 36 | 35 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 ≤ 𝐽) |
| 37 | 34 | zred 12702 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ∈ ℝ) |
| 38 | | simp3 1138 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 < (𝐼‘𝐶)) |
| 39 | 37, 31, 38 | ltled 11388 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ≤ (𝐼‘𝐶)) |
| 40 | 1, 30, 34, 36, 39 | elfzd 13537 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 𝐽 ∈ (1...(𝐼‘𝐶))) |
| 41 | 2, 3, 8, 9, 10, 11, 12, 13, 14 | ballotlemsel1i 34550 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |
| 42 | 26, 40, 41 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |
| 43 | | elfzle2 13550 |
. . . . . . . . 9
⊢ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶)) |
| 44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶)) |
| 45 | | zlem1lt 12649 |
. . . . . . . . 9
⊢ ((((𝑆‘𝐶)‘𝐽) ∈ ℤ ∧ (𝐼‘𝐶) ∈ ℤ) → (((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶))) |
| 46 | 17, 30, 45 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶))) |
| 47 | 44, 46 | mpbid 232 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶)) |
| 48 | 25, 31, 47 | ltled 11388 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ≤ (𝐼‘𝐶)) |
| 49 | | elfzle2 13550 |
. . . . . . 7
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 50 | 26, 28, 49 | 3syl 18 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 51 | 25, 31, 32, 48, 50 | letrd 11397 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ≤ (𝑀 + 𝑁)) |
| 52 | 1, 7, 18, 22, 51 | elfzd 13537 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁))) |
| 53 | | biid 261 |
. . . . . . . . 9
⊢ ((((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶)) |
| 54 | 47, 53 | sylibr 234 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶)) |
| 55 | 2, 3, 8, 9, 10, 11, 12, 13 | ballotlemi 34538 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
| 56 | 55 | breq2d 5136 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
| 57 | 56 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((((𝑆‘𝐶)‘𝐽) − 1) < (𝐼‘𝐶) ↔ (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
| 58 | 54, 57 | mpbid 232 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
| 59 | | ltso 11320 |
. . . . . . . . . 10
⊢ < Or
ℝ |
| 60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → < Or ℝ) |
| 61 | 2, 3, 8, 9, 10, 11, 12, 13 | ballotlemsup 34542 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤))) |
| 62 | 60, 61 | inflb 9507 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} → ¬ (((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
| 63 | 62 | con2d 134 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝑆‘𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ) → ¬ (((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0})) |
| 64 | 26, 58, 63 | sylc 65 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ¬ (((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}) |
| 65 | | fveqeq2 6890 |
. . . . . . 7
⊢ (𝑘 = (((𝑆‘𝐶)‘𝐽) − 1) → (((𝐹‘𝐶)‘𝑘) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
| 66 | 65 | elrab 3676 |
. . . . . 6
⊢ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ↔ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
| 67 | 64, 66 | sylnib 328 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ¬ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
| 68 | | imnan 399 |
. . . . 5
⊢
(((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0) ↔ ¬ ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
| 69 | 67, 68 | sylibr 234 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((((𝑆‘𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
| 70 | 52, 69 | mpd 15 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ¬ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0) |
| 71 | 70 | neqned 2940 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ≠ 0) |
| 72 | | ballotth.r |
. . . . . . . . . 10
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| 73 | 2, 3, 8, 9, 10, 11, 12, 13, 14, 72 | ballotlemro 34560 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
| 74 | 73 | adantr 480 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑅‘𝐶) ∈ 𝑂) |
| 75 | | elfzelz 13546 |
. . . . . . . . 9
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
| 76 | 75 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
| 77 | 2, 3, 8, 9, 10, 74, 76 | ballotlemfelz 34528 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℤ) |
| 78 | 77 | zcnd 12703 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℂ) |
| 79 | 78 | negeq0d 11591 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘(𝑅‘𝐶))‘𝐽) = 0 ↔ -((𝐹‘(𝑅‘𝐶))‘𝐽) = 0)) |
| 80 | | eqid 2736 |
. . . . . . 7
⊢ (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
| 81 | 2, 3, 8, 9, 10, 11, 12, 13, 14, 72, 80 | ballotlemfrceq 34566 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽)) |
| 82 | 81 | eqeq1d 2738 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0 ↔ -((𝐹‘(𝑅‘𝐶))‘𝐽) = 0)) |
| 83 | 79, 82 | bitr4d 282 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘(𝑅‘𝐶))‘𝐽) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = 0)) |
| 84 | 83 | necon3bid 2977 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ≠ 0)) |
| 85 | 26, 40, 84 | syl2anc 584 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → (((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ≠ 0)) |
| 86 | 71, 85 | mpbird 257 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0) |