Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrcn0 Structured version   Visualization version   GIF version

Theorem ballotlemfrcn0 34494
Description: Value of 𝐹 for a reversed counting (𝑅𝐶), before the first tie, cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2017.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemfrcn0 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfrcn0
Dummy variables 𝑣 𝑢 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12674 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ∈ ℤ)
2 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
3 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
4 nnaddcl 12316 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
52, 3, 4mp2an 691 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
65nnzi 12667 . . . . . 6 (𝑀 + 𝑁) ∈ ℤ
76a1i 11 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℤ)
8 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
9 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
11 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
12 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
13 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
14 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
152, 3, 8, 9, 10, 11, 12, 13, 14ballotlemsdom 34476 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
1615elfzelzd 13585 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
17163adant3 1132 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
1817, 1zsubcld 12752 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℤ)
192, 3, 8, 9, 10, 11, 12, 13, 14ballotlemsgt1 34475 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 < ((𝑆𝐶)‘𝐽))
20 zltlem1 12696 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑆𝐶)‘𝐽) ∈ ℤ) → (1 < ((𝑆𝐶)‘𝐽) ↔ 1 ≤ (((𝑆𝐶)‘𝐽) − 1)))
2120biimpa 476 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑆𝐶)‘𝐽) ∈ ℤ) ∧ 1 < ((𝑆𝐶)‘𝐽)) → 1 ≤ (((𝑆𝐶)‘𝐽) − 1))
221, 17, 19, 21syl21anc 837 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ≤ (((𝑆𝐶)‘𝐽) − 1))
2317zred 12747 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ∈ ℝ)
24 1red 11291 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ∈ ℝ)
2523, 24resubcld 11718 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℝ)
26 simp1 1136 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐶 ∈ (𝑂𝐸))
272, 3, 8, 9, 10, 11, 12, 13ballotlemiex 34466 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2827simpld 494 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
29 elfzelz 13584 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
3026, 28, 293syl 18 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
3130zred 12747 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝐼𝐶) ∈ ℝ)
327zred 12747 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℝ)
33 elfzelz 13584 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ ℤ)
34333ad2ant2 1134 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ∈ ℤ)
35 elfzle1 13587 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽)
36353ad2ant2 1134 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 1 ≤ 𝐽)
3734zred 12747 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ∈ ℝ)
38 simp3 1138 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 < (𝐼𝐶))
3937, 31, 38ltled 11438 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
401, 30, 34, 36, 39elfzd 13575 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → 𝐽 ∈ (1...(𝐼𝐶)))
412, 3, 8, 9, 10, 11, 12, 13, 14ballotlemsel1i 34477 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
4226, 40, 41syl2anc 583 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
43 elfzle2 13588 . . . . . . . . 9 (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶))
4442, 43syl 17 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶))
45 zlem1lt 12695 . . . . . . . . 9 ((((𝑆𝐶)‘𝐽) ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶)))
4617, 30, 45syl2anc 583 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) ≤ (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶)))
4744, 46mpbid 232 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶))
4825, 31, 47ltled 11438 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ≤ (𝐼𝐶))
49 elfzle2 13588 . . . . . . 7 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
5026, 28, 493syl 18 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
5125, 31, 32, 48, 50letrd 11447 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ≤ (𝑀 + 𝑁))
521, 7, 18, 22, 51elfzd 13575 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)))
53 biid 261 . . . . . . . . 9 ((((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶))
5447, 53sylibr 234 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶))
552, 3, 8, 9, 10, 11, 12, 13ballotlemi 34465 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
5655breq2d 5178 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
57563ad2ant1 1133 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((((𝑆𝐶)‘𝐽) − 1) < (𝐼𝐶) ↔ (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
5854, 57mpbid 232 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
59 ltso 11370 . . . . . . . . . 10 < Or ℝ
6059a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → < Or ℝ)
612, 3, 8, 9, 10, 11, 12, 13ballotlemsup 34469 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
6260, 61inflb 9558 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ (((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
6362con2d 134 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((((𝑆𝐶)‘𝐽) − 1) < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ) → ¬ (((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}))
6426, 58, 63sylc 65 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ¬ (((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0})
65 fveqeq2 6929 . . . . . . 7 (𝑘 = (((𝑆𝐶)‘𝐽) − 1) → (((𝐹𝐶)‘𝑘) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
6665elrab 3708 . . . . . 6 ((((𝑆𝐶)‘𝐽) − 1) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
6764, 66sylnib 328 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ¬ ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
68 imnan 399 . . . . 5 (((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0) ↔ ¬ ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
6967, 68sylibr 234 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((((𝑆𝐶)‘𝐽) − 1) ∈ (1...(𝑀 + 𝑁)) → ¬ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
7052, 69mpd 15 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ¬ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0)
7170neqned 2953 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ≠ 0)
72 ballotth.r . . . . . . . . . 10 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
732, 3, 8, 9, 10, 11, 12, 13, 14, 72ballotlemro 34487 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
7473adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
75 elfzelz 13584 . . . . . . . . 9 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
7675adantl 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
772, 3, 8, 9, 10, 74, 76ballotlemfelz 34455 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℤ)
7877zcnd 12748 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ)
7978negeq0d 11639 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹‘(𝑅𝐶))‘𝐽) = 0 ↔ -((𝐹‘(𝑅𝐶))‘𝐽) = 0))
80 eqid 2740 . . . . . . 7 (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
812, 3, 8, 9, 10, 11, 12, 13, 14, 72, 80ballotlemfrceq 34493 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
8281eqeq1d 2742 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0 ↔ -((𝐹‘(𝑅𝐶))‘𝐽) = 0))
8379, 82bitr4d 282 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹‘(𝑅𝐶))‘𝐽) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = 0))
8483necon3bid 2991 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ≠ 0))
8526, 40, 84syl2anc 583 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → (((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ≠ 0))
8671, 85mpbird 257 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼𝐶)) → ((𝐹‘(𝑅𝐶))‘𝐽) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  cin 3975  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249   Or wor 5606  cima 5703  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  cz 12639  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-hash 14380
This theorem is referenced by:  ballotlemirc  34496
  Copyright terms: Public domain W3C validator