| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfimaopn2 | Structured version Visualization version GIF version | ||
| Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfimaopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| mbfimaopn2.2 | ⊢ 𝐾 = (𝐽 ↾t 𝐵) |
| Ref | Expression |
|---|---|
| mbfimaopn2 | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn2.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝐵) | |
| 2 | 1 | eleq2i 2825 | . . . 4 ⊢ (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (𝐽 ↾t 𝐵)) |
| 3 | mbfimaopn.1 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 4 | 3 | cnfldtop 24701 | . . . . 5 ⊢ 𝐽 ∈ Top |
| 5 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
| 6 | cnex 11096 | . . . . . 6 ⊢ ℂ ∈ V | |
| 7 | ssexg 5265 | . . . . . 6 ⊢ ((𝐵 ⊆ ℂ ∧ ℂ ∈ V) → 𝐵 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ∈ V) |
| 9 | elrest 17335 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ V) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) | |
| 10 | 4, 8, 9 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
| 11 | 2, 10 | bitrid 283 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
| 12 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝐴⟶𝐵) | |
| 13 | ffun 6661 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 14 | inpreima 7005 | . . . . . . 7 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) |
| 16 | 3 | mbfimaopn 25587 | . . . . . . . 8 ⊢ ((𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
| 17 | 16 | 3ad2antl1 1186 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
| 18 | fimacnv 6680 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
| 19 | fdm 6667 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 20 | 18, 19 | eqtr4d 2771 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 21 | 12, 20 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 22 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹 ∈ MblFn) | |
| 23 | mbfdm 25557 | . . . . . . . . 9 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 ∈ dom vol) |
| 25 | 21, 24 | eqeltrd 2833 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) ∈ dom vol) |
| 26 | inmbl 25473 | . . . . . . 7 ⊢ (((◡𝐹 “ 𝑢) ∈ dom vol ∧ (◡𝐹 “ 𝐵) ∈ dom vol) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) | |
| 27 | 17, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) |
| 28 | 15, 27 | eqeltrd 2833 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol) |
| 29 | imaeq2 6011 | . . . . . 6 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝑢 ∩ 𝐵))) | |
| 30 | 29 | eleq1d 2818 | . . . . 5 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → ((◡𝐹 “ 𝐶) ∈ dom vol ↔ (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol)) |
| 31 | 28, 30 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 32 | 31 | rexlimdva 3134 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 33 | 11, 32 | sylbid 240 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 34 | 33 | imp 406 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Fun wfun 6482 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ↾t crest 17328 TopOpenctopn 17329 ℂfldccnfld 21295 Topctop 22811 volcvol 25394 MblFncmbf 25545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cc 10335 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-omul 8398 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-dju 9803 df-card 9841 df-acn 9844 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ioo 13253 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-cnp 23146 df-tx 23480 df-hmeo 23673 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 df-ovol 25395 df-vol 25396 df-mbf 25550 |
| This theorem is referenced by: cncombf 25589 |
| Copyright terms: Public domain | W3C validator |