![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfimaopn2 | Structured version Visualization version GIF version |
Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
mbfimaopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
mbfimaopn2.2 | ⊢ 𝐾 = (𝐽 ↾t 𝐵) |
Ref | Expression |
---|---|
mbfimaopn2 | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfimaopn2.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝐵) | |
2 | 1 | eleq2i 2831 | . . . 4 ⊢ (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (𝐽 ↾t 𝐵)) |
3 | mbfimaopn.1 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
4 | 3 | cnfldtop 24820 | . . . . 5 ⊢ 𝐽 ∈ Top |
5 | simp3 1137 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
6 | cnex 11234 | . . . . . 6 ⊢ ℂ ∈ V | |
7 | ssexg 5329 | . . . . . 6 ⊢ ((𝐵 ⊆ ℂ ∧ ℂ ∈ V) → 𝐵 ∈ V) | |
8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ∈ V) |
9 | elrest 17474 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ V) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) | |
10 | 4, 8, 9 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
11 | 2, 10 | bitrid 283 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
12 | simpl2 1191 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝐴⟶𝐵) | |
13 | ffun 6740 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
14 | inpreima 7084 | . . . . . . 7 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) |
16 | 3 | mbfimaopn 25705 | . . . . . . . 8 ⊢ ((𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
17 | 16 | 3ad2antl1 1184 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
18 | fimacnv 6759 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
19 | fdm 6746 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
20 | 18, 19 | eqtr4d 2778 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
21 | 12, 20 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) = dom 𝐹) |
22 | simpl1 1190 | . . . . . . . . 9 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹 ∈ MblFn) | |
23 | mbfdm 25675 | . . . . . . . . 9 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 ∈ dom vol) |
25 | 21, 24 | eqeltrd 2839 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) ∈ dom vol) |
26 | inmbl 25591 | . . . . . . 7 ⊢ (((◡𝐹 “ 𝑢) ∈ dom vol ∧ (◡𝐹 “ 𝐵) ∈ dom vol) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) | |
27 | 17, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) |
28 | 15, 27 | eqeltrd 2839 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol) |
29 | imaeq2 6076 | . . . . . 6 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝑢 ∩ 𝐵))) | |
30 | 29 | eleq1d 2824 | . . . . 5 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → ((◡𝐹 “ 𝐶) ∈ dom vol ↔ (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol)) |
31 | 28, 30 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
32 | 31 | rexlimdva 3153 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
33 | 11, 32 | sylbid 240 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 → (◡𝐹 “ 𝐶) ∈ dom vol)) |
34 | 33 | imp 406 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ◡ccnv 5688 dom cdm 5689 “ cima 5692 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 Topctop 22915 volcvol 25512 MblFncmbf 25663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-cnp 23252 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 |
This theorem is referenced by: cncombf 25707 |
Copyright terms: Public domain | W3C validator |