| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfimaopn2 | Structured version Visualization version GIF version | ||
| Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfimaopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| mbfimaopn2.2 | ⊢ 𝐾 = (𝐽 ↾t 𝐵) |
| Ref | Expression |
|---|---|
| mbfimaopn2 | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn2.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝐵) | |
| 2 | 1 | eleq2i 2823 | . . . 4 ⊢ (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (𝐽 ↾t 𝐵)) |
| 3 | mbfimaopn.1 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 4 | 3 | cnfldtop 24699 | . . . . 5 ⊢ 𝐽 ∈ Top |
| 5 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
| 6 | cnex 11087 | . . . . . 6 ⊢ ℂ ∈ V | |
| 7 | ssexg 5261 | . . . . . 6 ⊢ ((𝐵 ⊆ ℂ ∧ ℂ ∈ V) → 𝐵 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ∈ V) |
| 9 | elrest 17331 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ V) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) | |
| 10 | 4, 8, 9 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
| 11 | 2, 10 | bitrid 283 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
| 12 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝐴⟶𝐵) | |
| 13 | ffun 6654 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 14 | inpreima 6997 | . . . . . . 7 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) |
| 16 | 3 | mbfimaopn 25585 | . . . . . . . 8 ⊢ ((𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
| 17 | 16 | 3ad2antl1 1186 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
| 18 | fimacnv 6673 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
| 19 | fdm 6660 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 20 | 18, 19 | eqtr4d 2769 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 21 | 12, 20 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 22 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹 ∈ MblFn) | |
| 23 | mbfdm 25555 | . . . . . . . . 9 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 ∈ dom vol) |
| 25 | 21, 24 | eqeltrd 2831 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) ∈ dom vol) |
| 26 | inmbl 25471 | . . . . . . 7 ⊢ (((◡𝐹 “ 𝑢) ∈ dom vol ∧ (◡𝐹 “ 𝐵) ∈ dom vol) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) | |
| 27 | 17, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) |
| 28 | 15, 27 | eqeltrd 2831 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol) |
| 29 | imaeq2 6005 | . . . . . 6 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝑢 ∩ 𝐵))) | |
| 30 | 29 | eleq1d 2816 | . . . . 5 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → ((◡𝐹 “ 𝐶) ∈ dom vol ↔ (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol)) |
| 31 | 28, 30 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 32 | 31 | rexlimdva 3133 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 33 | 11, 32 | sylbid 240 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 34 | 33 | imp 406 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 “ cima 5619 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21292 Topctop 22809 volcvol 25392 MblFncmbf 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cn 23143 df-cnp 23144 df-tx 23478 df-hmeo 23671 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-ovol 25393 df-vol 25394 df-mbf 25548 |
| This theorem is referenced by: cncombf 25587 |
| Copyright terms: Public domain | W3C validator |