| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfimaopn2 | Structured version Visualization version GIF version | ||
| Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| mbfimaopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| mbfimaopn2.2 | ⊢ 𝐾 = (𝐽 ↾t 𝐵) |
| Ref | Expression |
|---|---|
| mbfimaopn2 | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn2.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝐵) | |
| 2 | 1 | eleq2i 2820 | . . . 4 ⊢ (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (𝐽 ↾t 𝐵)) |
| 3 | mbfimaopn.1 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 4 | 3 | cnfldtop 24687 | . . . . 5 ⊢ 𝐽 ∈ Top |
| 5 | simp3 1138 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
| 6 | cnex 11109 | . . . . . 6 ⊢ ℂ ∈ V | |
| 7 | ssexg 5265 | . . . . . 6 ⊢ ((𝐵 ⊆ ℂ ∧ ℂ ∈ V) → 𝐵 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ∈ V) |
| 9 | elrest 17349 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ V) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) | |
| 10 | 4, 8, 9 | sylancr 587 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
| 11 | 2, 10 | bitrid 283 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
| 12 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝐴⟶𝐵) | |
| 13 | ffun 6659 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 14 | inpreima 7002 | . . . . . . 7 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) |
| 16 | 3 | mbfimaopn 25573 | . . . . . . . 8 ⊢ ((𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
| 17 | 16 | 3ad2antl1 1186 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
| 18 | fimacnv 6678 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
| 19 | fdm 6665 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 20 | 18, 19 | eqtr4d 2767 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 21 | 12, 20 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 22 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹 ∈ MblFn) | |
| 23 | mbfdm 25543 | . . . . . . . . 9 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 ∈ dom vol) |
| 25 | 21, 24 | eqeltrd 2828 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) ∈ dom vol) |
| 26 | inmbl 25459 | . . . . . . 7 ⊢ (((◡𝐹 “ 𝑢) ∈ dom vol ∧ (◡𝐹 “ 𝐵) ∈ dom vol) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) | |
| 27 | 17, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) |
| 28 | 15, 27 | eqeltrd 2828 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol) |
| 29 | imaeq2 6011 | . . . . . 6 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝑢 ∩ 𝐵))) | |
| 30 | 29 | eleq1d 2813 | . . . . 5 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → ((◡𝐹 “ 𝐶) ∈ dom vol ↔ (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol)) |
| 31 | 28, 30 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 32 | 31 | rexlimdva 3130 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 33 | 11, 32 | sylbid 240 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 → (◡𝐹 “ 𝐶) ∈ dom vol)) |
| 34 | 33 | imp 406 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ↾t crest 17342 TopOpenctopn 17343 ℂfldccnfld 21279 Topctop 22796 volcvol 25380 MblFncmbf 25531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-ovol 25381 df-vol 25382 df-mbf 25536 |
| This theorem is referenced by: cncombf 25575 |
| Copyright terms: Public domain | W3C validator |