Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfimaopn2 | Structured version Visualization version GIF version |
Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
mbfimaopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
mbfimaopn2.2 | ⊢ 𝐾 = (𝐽 ↾t 𝐵) |
Ref | Expression |
---|---|
mbfimaopn2 | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfimaopn2.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝐵) | |
2 | 1 | eleq2i 2829 | . . . 4 ⊢ (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (𝐽 ↾t 𝐵)) |
3 | mbfimaopn.1 | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
4 | 3 | cnfldtop 23681 | . . . . 5 ⊢ 𝐽 ∈ Top |
5 | simp3 1140 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ⊆ ℂ) | |
6 | cnex 10810 | . . . . . 6 ⊢ ℂ ∈ V | |
7 | ssexg 5216 | . . . . . 6 ⊢ ((𝐵 ⊆ ℂ ∧ ℂ ∈ V) → 𝐵 ∈ V) | |
8 | 5, 6, 7 | sylancl 589 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → 𝐵 ∈ V) |
9 | elrest 16932 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ V) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) | |
10 | 4, 8, 9 | sylancr 590 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
11 | 2, 10 | syl5bb 286 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 ↔ ∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵))) |
12 | simpl2 1194 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝐴⟶𝐵) | |
13 | ffun 6548 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
14 | inpreima 6884 | . . . . . . 7 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵))) |
16 | 3 | mbfimaopn 24553 | . . . . . . . 8 ⊢ ((𝐹 ∈ MblFn ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
17 | 16 | 3ad2antl1 1187 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝑢) ∈ dom vol) |
18 | fimacnv 6567 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | |
19 | fdm 6554 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
20 | 18, 19 | eqtr4d 2780 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
21 | 12, 20 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) = dom 𝐹) |
22 | simpl1 1193 | . . . . . . . . 9 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → 𝐹 ∈ MblFn) | |
23 | mbfdm 24523 | . . . . . . . . 9 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 ∈ dom vol) |
25 | 21, 24 | eqeltrd 2838 | . . . . . . 7 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ 𝐵) ∈ dom vol) |
26 | inmbl 24439 | . . . . . . 7 ⊢ (((◡𝐹 “ 𝑢) ∈ dom vol ∧ (◡𝐹 “ 𝐵) ∈ dom vol) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) | |
27 | 17, 25, 26 | syl2anc 587 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝐵)) ∈ dom vol) |
28 | 15, 27 | eqeltrd 2838 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol) |
29 | imaeq2 5925 | . . . . . 6 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝑢 ∩ 𝐵))) | |
30 | 29 | eleq1d 2822 | . . . . 5 ⊢ (𝐶 = (𝑢 ∩ 𝐵) → ((◡𝐹 “ 𝐶) ∈ dom vol ↔ (◡𝐹 “ (𝑢 ∩ 𝐵)) ∈ dom vol)) |
31 | 28, 30 | syl5ibrcom 250 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝑢 ∈ 𝐽) → (𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
32 | 31 | rexlimdva 3203 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (∃𝑢 ∈ 𝐽 𝐶 = (𝑢 ∩ 𝐵) → (◡𝐹 “ 𝐶) ∈ dom vol)) |
33 | 11, 32 | sylbid 243 | . 2 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) → (𝐶 ∈ 𝐾 → (◡𝐹 “ 𝐶) ∈ dom vol)) |
34 | 33 | imp 410 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 ◡ccnv 5550 dom cdm 5551 “ cima 5554 Fun wfun 6374 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ↾t crest 16925 TopOpenctopn 16926 ℂfldccnfld 20363 Topctop 21790 volcvol 24360 MblFncmbf 24511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cc 10049 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-disj 5019 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-dju 9517 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-rlim 15050 df-sum 15250 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cn 22124 df-cnp 22125 df-tx 22459 df-hmeo 22652 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-ovol 24361 df-vol 24362 df-mbf 24516 |
This theorem is referenced by: cncombf 24555 |
Copyright terms: Public domain | W3C validator |