Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfd Structured version   Visualization version   GIF version

Theorem ismbfd 23847
 Description: Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 23862. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbfd.1 (𝜑𝐹:𝐴⟶ℝ)
ismbfd.2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbfd.3 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbfd (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbfd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12588 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6293 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7089 . . . . 5 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)))
41, 2, 3mp2b 10 . . . 4 (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦))
5 simprl 761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ∈ ℝ*)
6 pnfxr 10432 . . . . . . . . . . . 12 +∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → +∞ ∈ ℝ*)
8 mnfxr 10436 . . . . . . . . . . . 12 -∞ ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → -∞ ∈ ℝ*)
10 simprr 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ∈ ℝ*)
11 iooin 12525 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
125, 7, 9, 10, 11syl22anc 829 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
13 mnfle 12283 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
14 xrleid 12298 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ*𝑥𝑥)
15 breq1 4891 . . . . . . . . . . . . . . 15 (-∞ = if(𝑥 ≤ -∞, -∞, 𝑥) → (-∞ ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
16 breq1 4891 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
1715, 16ifboth 4345 . . . . . . . . . . . . . 14 ((-∞ ≤ 𝑥𝑥𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
1813, 14, 17syl2anc 579 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
1918ad2antrl 718 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
20 xrmax1 12322 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
215, 8, 20sylancl 580 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
22 ifcl 4351 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
238, 5, 22sylancr 581 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
24 xrletri3 12301 . . . . . . . . . . . . 13 ((if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*𝑥 ∈ ℝ*) → (if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥 ↔ (if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))))
2523, 5, 24syl2anc 579 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥 ↔ (if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))))
2619, 21, 25mpbir2and 703 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥)
27 xrmin2 12325 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
286, 10, 27sylancr 581 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
29 pnfge 12279 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
30 xrleid 12298 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦𝑦)
31 breq2 4892 . . . . . . . . . . . . . . 15 (+∞ = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
32 breq2 4892 . . . . . . . . . . . . . . 15 (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
3331, 32ifboth 4345 . . . . . . . . . . . . . 14 ((𝑦 ≤ +∞ ∧ 𝑦𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3429, 30, 33syl2anc 579 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3534ad2antll 719 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
36 ifcl 4351 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
376, 10, 36sylancr 581 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
38 xrletri3 12301 . . . . . . . . . . . . 13 ((if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → (if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦 ↔ (if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))))
3937, 10, 38syl2anc 579 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦 ↔ (if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))))
4028, 35, 39mpbir2and 703 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦)
4126, 40oveq12d 6942 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦))
4212, 41eqtrd 2814 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (𝑥(,)𝑦))
4342imaeq2d 5722 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (𝐹 “ (𝑥(,)𝑦)))
44 ismbfd.1 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
4544adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝐹:𝐴⟶ℝ)
4645ffund 6297 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → Fun 𝐹)
47 inpreima 6608 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4846, 47syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4943, 48eqtr3d 2816 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
50 ismbfd.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
5150adantrr 707 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
52 ismbfd.3 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
5352ralrimiva 3148 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
54 oveq2 6932 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦))
5554imaeq2d 5722 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ (-∞(,)𝑦)))
5655eleq1d 2844 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol))
5756rspccva 3510 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5853, 57sylan 575 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5958adantrl 706 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
60 inmbl 23750 . . . . . . . 8 (((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
6151, 59, 60syl2anc 579 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
6249, 61eqeltrd 2859 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)
63 imaeq2 5718 . . . . . . 7 (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) = (𝐹 “ (𝑥(,)𝑦)))
6463eleq1d 2844 . . . . . 6 (𝑧 = (𝑥(,)𝑦) → ((𝐹𝑧) ∈ dom vol ↔ (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol))
6562, 64syl5ibrcom 239 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
6665rexlimdvva 3221 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
674, 66syl5bi 234 . . 3 (𝜑 → (𝑧 ∈ ran (,) → (𝐹𝑧) ∈ dom vol))
6867ralrimiv 3147 . 2 (𝜑 → ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol)
69 ismbf 23836 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
7044, 69syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
7168, 70mpbird 249 1 (𝜑𝐹 ∈ MblFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  ∀wral 3090  ∃wrex 3091   ∩ cin 3791  ifcif 4307  𝒫 cpw 4379   class class class wbr 4888   × cxp 5355  ◡ccnv 5356  dom cdm 5357  ran crn 5358   “ cima 5360  Fun wfun 6131   Fn wfn 6132  ⟶wf 6133  (class class class)co 6924  ℝcr 10273  +∞cpnf 10410  -∞cmnf 10411  ℝ*cxr 10412   ≤ cle 10414  (,)cioo 12491  volcvol 23671  MblFncmbf 23822 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-q 12100  df-rp 12142  df-xadd 12262  df-ioo 12495  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-seq 13124  df-exp 13183  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-clim 14631  df-sum 14829  df-xmet 20139  df-met 20140  df-ovol 23672  df-vol 23673  df-mbf 23827 This theorem is referenced by:  ismbf2d  23848  mbfmax  23857
 Copyright terms: Public domain W3C validator