MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfd Structured version   Visualization version   GIF version

Theorem ismbfd 25516
Description: Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 25531. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbfd.1 (𝜑𝐹:𝐴⟶ℝ)
ismbfd.2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbfd.3 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbfd (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbfd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13384 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6670 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7545 . . . . 5 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)))
41, 2, 3mp2b 10 . . . 4 (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦))
5 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ∈ ℝ*)
6 pnfxr 11204 . . . . . . . . . . . 12 +∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → +∞ ∈ ℝ*)
8 mnfxr 11207 . . . . . . . . . . . 12 -∞ ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → -∞ ∈ ℝ*)
10 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ∈ ℝ*)
11 iooin 13316 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
125, 7, 9, 10, 11syl22anc 838 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
13 ifcl 4530 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
148, 5, 13sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
15 mnfle 13071 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
16 xrleid 13087 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ*𝑥𝑥)
17 breq1 5105 . . . . . . . . . . . . . . 15 (-∞ = if(𝑥 ≤ -∞, -∞, 𝑥) → (-∞ ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
18 breq1 5105 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
1917, 18ifboth 4524 . . . . . . . . . . . . . 14 ((-∞ ≤ 𝑥𝑥𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
2015, 16, 19syl2anc 584 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
2120ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
22 xrmax1 13111 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
235, 8, 22sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
2414, 5, 21, 23xrletrid 13091 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥)
25 ifcl 4530 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
266, 10, 25sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
27 xrmin2 13114 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
286, 10, 27sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
29 pnfge 13066 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
30 xrleid 13087 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦𝑦)
31 breq2 5106 . . . . . . . . . . . . . . 15 (+∞ = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
32 breq2 5106 . . . . . . . . . . . . . . 15 (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
3331, 32ifboth 4524 . . . . . . . . . . . . . 14 ((𝑦 ≤ +∞ ∧ 𝑦𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3429, 30, 33syl2anc 584 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3534ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3626, 10, 28, 35xrletrid 13091 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦)
3724, 36oveq12d 7387 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦))
3812, 37eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (𝑥(,)𝑦))
3938imaeq2d 6020 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (𝐹 “ (𝑥(,)𝑦)))
40 ismbfd.1 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝐹:𝐴⟶ℝ)
4241ffund 6674 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → Fun 𝐹)
43 inpreima 7018 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4442, 43syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4539, 44eqtr3d 2766 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
46 ismbfd.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
4746adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
48 ismbfd.3 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
4948ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
50 oveq2 7377 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦))
5150imaeq2d 6020 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ (-∞(,)𝑦)))
5251eleq1d 2813 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol))
5352rspccva 3584 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5449, 53sylan 580 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5554adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
56 inmbl 25419 . . . . . . . 8 (((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
5747, 55, 56syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
5845, 57eqeltrd 2828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)
59 imaeq2 6016 . . . . . . 7 (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) = (𝐹 “ (𝑥(,)𝑦)))
6059eleq1d 2813 . . . . . 6 (𝑧 = (𝑥(,)𝑦) → ((𝐹𝑧) ∈ dom vol ↔ (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol))
6158, 60syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
6261rexlimdvva 3192 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
634, 62biimtrid 242 . . 3 (𝜑 → (𝑧 ∈ ran (,) → (𝐹𝑧) ∈ dom vol))
6463ralrimiv 3124 . 2 (𝜑 → ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol)
65 ismbf 25505 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
6640, 65syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
6764, 66mpbird 257 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3910  ifcif 4484  𝒫 cpw 4559   class class class wbr 5102   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  (class class class)co 7369  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183  cle 11185  (,)cioo 13282  volcvol 25340  MblFncmbf 25491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-xmet 21233  df-met 21234  df-ovol 25341  df-vol 25342  df-mbf 25496
This theorem is referenced by:  ismbf2d  25517  mbfmax  25526
  Copyright terms: Public domain W3C validator