Step | Hyp | Ref
| Expression |
1 | | ioof 13179 |
. . . . 5
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
2 | | ffn 6600 |
. . . . 5
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
3 | | ovelrn 7448 |
. . . . 5
⊢ ((,) Fn
(ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*
∃𝑦 ∈
ℝ* 𝑧 =
(𝑥(,)𝑦))) |
4 | 1, 2, 3 | mp2b 10 |
. . . 4
⊢ (𝑧 ∈ ran (,) ↔
∃𝑥 ∈
ℝ* ∃𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)) |
5 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑥 ∈
ℝ*) |
6 | | pnfxr 11029 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
7 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ +∞ ∈ ℝ*) |
8 | | mnfxr 11032 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ -∞ ∈ ℝ*) |
10 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑦 ∈
ℝ*) |
11 | | iooin 13113 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ +∞ ∈ ℝ*) ∧ (-∞ ∈
ℝ* ∧ 𝑦
∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦))) |
12 | 5, 7, 9, 10, 11 | syl22anc 836 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ ((𝑥(,)+∞)
∩ (-∞(,)𝑦)) =
(if(𝑥 ≤ -∞,
-∞, 𝑥)(,)if(+∞
≤ 𝑦, +∞, 𝑦))) |
13 | | ifcl 4504 |
. . . . . . . . . . . . 13
⊢
((-∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈
ℝ*) |
14 | 8, 5, 13 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(𝑥 ≤ -∞,
-∞, 𝑥) ∈
ℝ*) |
15 | | mnfle 12870 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ -∞ ≤ 𝑥) |
16 | | xrleid 12885 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ 𝑥 ≤ 𝑥) |
17 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (-∞
= if(𝑥 ≤ -∞,
-∞, 𝑥) →
(-∞ ≤ 𝑥 ↔
if(𝑥 ≤ -∞,
-∞, 𝑥) ≤ 𝑥)) |
18 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥 ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)) |
19 | 17, 18 | ifboth 4498 |
. . . . . . . . . . . . . 14
⊢
((-∞ ≤ 𝑥
∧ 𝑥 ≤ 𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥) |
20 | 15, 16, 19 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ*
→ if(𝑥 ≤ -∞,
-∞, 𝑥) ≤ 𝑥) |
21 | 20 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(𝑥 ≤ -∞,
-∞, 𝑥) ≤ 𝑥) |
22 | | xrmax1 12909 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥)) |
23 | 5, 8, 22 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥)) |
24 | 14, 5, 21, 23 | xrletrid 12889 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(𝑥 ≤ -∞,
-∞, 𝑥) = 𝑥) |
25 | | ifcl 4504 |
. . . . . . . . . . . . 13
⊢
((+∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) →
if(+∞ ≤ 𝑦,
+∞, 𝑦) ∈
ℝ*) |
26 | 6, 10, 25 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(+∞ ≤ 𝑦,
+∞, 𝑦) ∈
ℝ*) |
27 | | xrmin2 12912 |
. . . . . . . . . . . . 13
⊢
((+∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) →
if(+∞ ≤ 𝑦,
+∞, 𝑦) ≤ 𝑦) |
28 | 6, 10, 27 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(+∞ ≤ 𝑦,
+∞, 𝑦) ≤ 𝑦) |
29 | | pnfge 12866 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) |
30 | | xrleid 12885 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤ 𝑦) |
31 | | breq2 5078 |
. . . . . . . . . . . . . . 15
⊢ (+∞
= if(+∞ ≤ 𝑦,
+∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))) |
32 | | breq2 5078 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ 𝑦 ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))) |
33 | 31, 32 | ifboth 4498 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≤ +∞ ∧ 𝑦 ≤ 𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)) |
34 | 29, 30, 33 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤ if(+∞
≤ 𝑦, +∞, 𝑦)) |
35 | 34 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑦 ≤ if(+∞
≤ 𝑦, +∞, 𝑦)) |
36 | 26, 10, 28, 35 | xrletrid 12889 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(+∞ ≤ 𝑦,
+∞, 𝑦) = 𝑦) |
37 | 24, 36 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (if(𝑥 ≤ -∞,
-∞, 𝑥)(,)if(+∞
≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦)) |
38 | 12, 37 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ ((𝑥(,)+∞)
∩ (-∞(,)𝑦)) =
(𝑥(,)𝑦)) |
39 | 38 | imaeq2d 5969 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (◡𝐹 “ (𝑥(,)𝑦))) |
40 | | ismbfd.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
41 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝐹:𝐴⟶ℝ) |
42 | 41 | ffund 6604 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ Fun 𝐹) |
43 | | inpreima 6941 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (◡𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦)))) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦)))) |
45 | 39, 44 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (𝑥(,)𝑦)) = ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦)))) |
46 | | ismbfd.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
47 | 46 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
48 | | ismbfd.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
49 | 48 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ℝ* (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
50 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦)) |
51 | 50 | imaeq2d 5969 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ (-∞(,)𝑦))) |
52 | 51 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol)) |
53 | 52 | rspccva 3560 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ* (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) |
54 | 49, 53 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) |
55 | 54 | adantrl 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) |
56 | | inmbl 24706 |
. . . . . . . 8
⊢ (((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦))) ∈ dom vol) |
57 | 47, 55, 56 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦))) ∈ dom vol) |
58 | 45, 57 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (𝑥(,)𝑦)) ∈ dom vol) |
59 | | imaeq2 5965 |
. . . . . . 7
⊢ (𝑧 = (𝑥(,)𝑦) → (◡𝐹 “ 𝑧) = (◡𝐹 “ (𝑥(,)𝑦))) |
60 | 59 | eleq1d 2823 |
. . . . . 6
⊢ (𝑧 = (𝑥(,)𝑦) → ((◡𝐹 “ 𝑧) ∈ dom vol ↔ (◡𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)) |
61 | 58, 60 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (𝑧 = (𝑥(,)𝑦) → (◡𝐹 “ 𝑧) ∈ dom vol)) |
62 | 61 | rexlimdvva 3223 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ*
𝑧 = (𝑥(,)𝑦) → (◡𝐹 “ 𝑧) ∈ dom vol)) |
63 | 4, 62 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ran (,) → (◡𝐹 “ 𝑧) ∈ dom vol)) |
64 | 63 | ralrimiv 3102 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ ran (,)(◡𝐹 “ 𝑧) ∈ dom vol) |
65 | | ismbf 24792 |
. . 3
⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(◡𝐹 “ 𝑧) ∈ dom vol)) |
66 | 40, 65 | syl 17 |
. 2
⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(◡𝐹 “ 𝑧) ∈ dom vol)) |
67 | 64, 66 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ∈ MblFn) |