MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfd Structured version   Visualization version   GIF version

Theorem ismbfd 24232
Description: Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 24247. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbfd.1 (𝜑𝐹:𝐴⟶ℝ)
ismbfd.2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbfd.3 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbfd (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbfd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12827 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6507 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7316 . . . . 5 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)))
41, 2, 3mp2b 10 . . . 4 (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦))
5 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ∈ ℝ*)
6 pnfxr 10687 . . . . . . . . . . . 12 +∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → +∞ ∈ ℝ*)
8 mnfxr 10690 . . . . . . . . . . . 12 -∞ ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → -∞ ∈ ℝ*)
10 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ∈ ℝ*)
11 iooin 12764 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
125, 7, 9, 10, 11syl22anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
13 ifcl 4509 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
148, 5, 13sylancr 589 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
15 mnfle 12521 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
16 xrleid 12536 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ*𝑥𝑥)
17 breq1 5060 . . . . . . . . . . . . . . 15 (-∞ = if(𝑥 ≤ -∞, -∞, 𝑥) → (-∞ ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
18 breq1 5060 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
1917, 18ifboth 4503 . . . . . . . . . . . . . 14 ((-∞ ≤ 𝑥𝑥𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
2015, 16, 19syl2anc 586 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
2120ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
22 xrmax1 12560 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
235, 8, 22sylancl 588 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
2414, 5, 21, 23xrletrid 12540 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥)
25 ifcl 4509 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
266, 10, 25sylancr 589 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
27 xrmin2 12563 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
286, 10, 27sylancr 589 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
29 pnfge 12517 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
30 xrleid 12536 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦𝑦)
31 breq2 5061 . . . . . . . . . . . . . . 15 (+∞ = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
32 breq2 5061 . . . . . . . . . . . . . . 15 (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
3331, 32ifboth 4503 . . . . . . . . . . . . . 14 ((𝑦 ≤ +∞ ∧ 𝑦𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3429, 30, 33syl2anc 586 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3534ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3626, 10, 28, 35xrletrid 12540 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦)
3724, 36oveq12d 7166 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦))
3812, 37eqtrd 2854 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (𝑥(,)𝑦))
3938imaeq2d 5922 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (𝐹 “ (𝑥(,)𝑦)))
40 ismbfd.1 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
4140adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝐹:𝐴⟶ℝ)
4241ffund 6511 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → Fun 𝐹)
43 inpreima 6827 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4442, 43syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4539, 44eqtr3d 2856 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
46 ismbfd.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
4746adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
48 ismbfd.3 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
4948ralrimiva 3180 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
50 oveq2 7156 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦))
5150imaeq2d 5922 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ (-∞(,)𝑦)))
5251eleq1d 2895 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol))
5352rspccva 3620 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5449, 53sylan 582 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5554adantrl 714 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
56 inmbl 24135 . . . . . . . 8 (((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
5747, 55, 56syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
5845, 57eqeltrd 2911 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)
59 imaeq2 5918 . . . . . . 7 (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) = (𝐹 “ (𝑥(,)𝑦)))
6059eleq1d 2895 . . . . . 6 (𝑧 = (𝑥(,)𝑦) → ((𝐹𝑧) ∈ dom vol ↔ (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol))
6158, 60syl5ibrcom 249 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
6261rexlimdvva 3292 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
634, 62syl5bi 244 . . 3 (𝜑 → (𝑧 ∈ ran (,) → (𝐹𝑧) ∈ dom vol))
6463ralrimiv 3179 . 2 (𝜑 → ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol)
65 ismbf 24221 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
6640, 65syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
6764, 66mpbird 259 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137  cin 3933  ifcif 4465  𝒫 cpw 4537   class class class wbr 5057   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  Fun wfun 6342   Fn wfn 6343  wf 6344  (class class class)co 7148  cr 10528  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666  cle 10668  (,)cioo 12730  volcvol 24056  MblFncmbf 24207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20530  df-met 20531  df-ovol 24057  df-vol 24058  df-mbf 24212
This theorem is referenced by:  ismbf2d  24233  mbfmax  24242
  Copyright terms: Public domain W3C validator