MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfd Structured version   Visualization version   GIF version

Theorem ismbfd 24169
Description: Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 24184. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbfd.1 (𝜑𝐹:𝐴⟶ℝ)
ismbfd.2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbfd.3 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbfd (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbfd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12825 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6508 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7313 . . . . 5 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)))
41, 2, 3mp2b 10 . . . 4 (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦))
5 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ∈ ℝ*)
6 pnfxr 10684 . . . . . . . . . . . 12 +∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → +∞ ∈ ℝ*)
8 mnfxr 10687 . . . . . . . . . . . 12 -∞ ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → -∞ ∈ ℝ*)
10 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ∈ ℝ*)
11 iooin 12762 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
125, 7, 9, 10, 11syl22anc 834 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
13 ifcl 4509 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
148, 5, 13sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
15 mnfle 12519 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
16 xrleid 12534 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ*𝑥𝑥)
17 breq1 5061 . . . . . . . . . . . . . . 15 (-∞ = if(𝑥 ≤ -∞, -∞, 𝑥) → (-∞ ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
18 breq1 5061 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
1917, 18ifboth 4503 . . . . . . . . . . . . . 14 ((-∞ ≤ 𝑥𝑥𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
2015, 16, 19syl2anc 584 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
2120ad2antrl 724 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
22 xrmax1 12558 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
235, 8, 22sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
2414, 5, 21, 23xrletrid 12538 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥)
25 ifcl 4509 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
266, 10, 25sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
27 xrmin2 12561 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
286, 10, 27sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
29 pnfge 12515 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
30 xrleid 12534 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦𝑦)
31 breq2 5062 . . . . . . . . . . . . . . 15 (+∞ = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
32 breq2 5062 . . . . . . . . . . . . . . 15 (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
3331, 32ifboth 4503 . . . . . . . . . . . . . 14 ((𝑦 ≤ +∞ ∧ 𝑦𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3429, 30, 33syl2anc 584 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3534ad2antll 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3626, 10, 28, 35xrletrid 12538 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦)
3724, 36oveq12d 7163 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦))
3812, 37eqtrd 2856 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (𝑥(,)𝑦))
3938imaeq2d 5923 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (𝐹 “ (𝑥(,)𝑦)))
40 ismbfd.1 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
4140adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝐹:𝐴⟶ℝ)
4241ffund 6512 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → Fun 𝐹)
43 inpreima 6827 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4442, 43syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4539, 44eqtr3d 2858 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
46 ismbfd.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
4746adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
48 ismbfd.3 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
4948ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
50 oveq2 7153 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦))
5150imaeq2d 5923 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ (-∞(,)𝑦)))
5251eleq1d 2897 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol))
5352rspccva 3621 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5449, 53sylan 580 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5554adantrl 712 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
56 inmbl 24072 . . . . . . . 8 (((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
5747, 55, 56syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
5845, 57eqeltrd 2913 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)
59 imaeq2 5919 . . . . . . 7 (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) = (𝐹 “ (𝑥(,)𝑦)))
6059eleq1d 2897 . . . . . 6 (𝑧 = (𝑥(,)𝑦) → ((𝐹𝑧) ∈ dom vol ↔ (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol))
6158, 60syl5ibrcom 248 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
6261rexlimdvva 3294 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
634, 62syl5bi 243 . . 3 (𝜑 → (𝑧 ∈ ran (,) → (𝐹𝑧) ∈ dom vol))
6463ralrimiv 3181 . 2 (𝜑 → ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol)
65 ismbf 24158 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
6640, 65syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
6764, 66mpbird 258 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3138  wrex 3139  cin 3934  ifcif 4465  𝒫 cpw 4537   class class class wbr 5058   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  (class class class)co 7145  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663  cle 10665  (,)cioo 12728  volcvol 23993  MblFncmbf 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-xadd 12498  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-sum 15033  df-xmet 20468  df-met 20469  df-ovol 23994  df-vol 23995  df-mbf 24149
This theorem is referenced by:  ismbf2d  24170  mbfmax  24179
  Copyright terms: Public domain W3C validator