| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfir | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| elfir | ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ 𝐵) | |
| 2 | elpw2g 5308 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | imbitrrid 246 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵)) |
| 4 | 3 | imp 406 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | simpr3 1197 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) | |
| 6 | 4, 5 | elind 4180 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin)) |
| 7 | eqid 2736 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝐴 | |
| 8 | inteq 4930 | . . . 4 ⊢ (𝑥 = 𝐴 → ∩ 𝑥 = ∩ 𝐴) | |
| 9 | 8 | rspceeqv 3629 | . . 3 ⊢ ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ ∩ 𝐴 = ∩ 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
| 10 | 6, 7, 9 | sylancl 586 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
| 11 | simp2 1137 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) | |
| 12 | intex 5319 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ V) |
| 14 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
| 15 | elfi 9430 | . . 3 ⊢ ((∩ 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) | |
| 16 | 13, 14, 15 | syl2anr 597 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) |
| 17 | 10, 16 | mpbird 257 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∩ cint 4927 ‘cfv 6536 Fincfn 8964 ficfi 9427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-fi 9428 |
| This theorem is referenced by: intrnfi 9433 ssfii 9436 elfiun 9447 ptbasfi 23524 fbssint 23781 filintn0 23804 alexsublem 23987 ispisys2 34189 |
| Copyright terms: Public domain | W3C validator |