Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfir | Structured version Visualization version GIF version |
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
elfir | ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ 𝐵) | |
2 | elpw2g 5212 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | syl5ibr 249 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵)) |
4 | 3 | imp 410 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵) |
5 | simpr3 1197 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) | |
6 | 4, 5 | elind 4084 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin)) |
7 | eqid 2738 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝐴 | |
8 | inteq 4839 | . . . 4 ⊢ (𝑥 = 𝐴 → ∩ 𝑥 = ∩ 𝐴) | |
9 | 8 | rspceeqv 3541 | . . 3 ⊢ ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ ∩ 𝐴 = ∩ 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
10 | 6, 7, 9 | sylancl 589 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
11 | simp2 1138 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) | |
12 | intex 5205 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
13 | 11, 12 | sylib 221 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ V) |
14 | id 22 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
15 | elfi 8950 | . . 3 ⊢ ((∩ 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) | |
16 | 13, 14, 15 | syl2anr 600 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) |
17 | 10, 16 | mpbird 260 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∃wrex 3054 Vcvv 3398 ∩ cin 3842 ⊆ wss 3843 ∅c0 4211 𝒫 cpw 4488 ∩ cint 4836 ‘cfv 6339 Fincfn 8555 ficfi 8947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-int 4837 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-fi 8948 |
This theorem is referenced by: intrnfi 8953 ssfii 8956 elfiun 8967 ptbasfi 22332 fbssint 22589 filintn0 22612 alexsublem 22795 ispisys2 31691 |
Copyright terms: Public domain | W3C validator |