MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfir Structured version   Visualization version   GIF version

Theorem elfir 8863
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))

Proof of Theorem elfir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . . 6 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐵)
2 elpw2g 5211 . . . . . 6 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2syl5ibr 249 . . . . 5 (𝐵𝑉 → ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵))
43imp 410 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵)
5 simpr3 1193 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
64, 5elind 4121 . . 3 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin))
7 eqid 2798 . . 3 𝐴 = 𝐴
8 inteq 4841 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
98rspceeqv 3586 . . 3 ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
106, 7, 9sylancl 589 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
11 simp2 1134 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 intex 5204 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
1311, 12sylib 221 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ V)
14 id 22 . . 3 (𝐵𝑉𝐵𝑉)
15 elfi 8861 . . 3 (( 𝐴 ∈ V ∧ 𝐵𝑉) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1613, 14, 15syl2anr 599 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1710, 16mpbird 260 1 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   cint 4838  cfv 6324  Fincfn 8492  ficfi 8858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-fi 8859
This theorem is referenced by:  intrnfi  8864  ssfii  8867  elfiun  8878  ptbasfi  22186  fbssint  22443  filintn0  22466  alexsublem  22649  ispisys2  31522
  Copyright terms: Public domain W3C validator