MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfir Structured version   Visualization version   GIF version

Theorem elfir 9412
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))

Proof of Theorem elfir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐵)
2 elpw2g 5344 . . . . . 6 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2imbitrrid 245 . . . . 5 (𝐵𝑉 → ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵))
43imp 407 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵)
5 simpr3 1196 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
64, 5elind 4194 . . 3 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin))
7 eqid 2732 . . 3 𝐴 = 𝐴
8 inteq 4953 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
98rspceeqv 3633 . . 3 ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
106, 7, 9sylancl 586 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
11 simp2 1137 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 intex 5337 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
1311, 12sylib 217 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ V)
14 id 22 . . 3 (𝐵𝑉𝐵𝑉)
15 elfi 9410 . . 3 (( 𝐴 ∈ V ∧ 𝐵𝑉) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1613, 14, 15syl2anr 597 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1710, 16mpbird 256 1 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602   cint 4950  cfv 6543  Fincfn 8941  ficfi 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-fi 9408
This theorem is referenced by:  intrnfi  9413  ssfii  9416  elfiun  9427  ptbasfi  23305  fbssint  23562  filintn0  23585  alexsublem  23768  ispisys2  33437
  Copyright terms: Public domain W3C validator