| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscgrgd | Structured version Visualization version GIF version | ||
| Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| iscgrg.p | ⊢ 𝑃 = (Base‘𝐺) |
| iscgrg.m | ⊢ − = (dist‘𝐺) |
| iscgrg.e | ⊢ ∼ = (cgrG‘𝐺) |
| iscgrgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| iscgrgd.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| iscgrgd.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
| iscgrgd.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
| Ref | Expression |
|---|---|
| iscgrgd | ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgrgd.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) | |
| 2 | iscgrgd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
| 3 | iscgrg.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | 3 | fvexi 6845 | . . . . . 6 ⊢ 𝑃 ∈ V |
| 5 | reex 11108 | . . . . . 6 ⊢ ℝ ∈ V | |
| 6 | elpm2r 8778 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃 ↑pm ℝ)) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . . . 5 ⊢ ((𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
| 8 | 1, 2, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
| 9 | iscgrgd.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) | |
| 10 | elpm2r 8778 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃 ↑pm ℝ)) | |
| 11 | 4, 5, 10 | mpanl12 702 | . . . . 5 ⊢ ((𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
| 12 | 9, 2, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
| 13 | 8, 12 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ))) |
| 14 | 13 | biantrurd 532 | . 2 ⊢ (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
| 15 | 1 | fdmd 6669 | . . . 4 ⊢ (𝜑 → dom 𝐴 = 𝐷) |
| 16 | 9 | fdmd 6669 | . . . 4 ⊢ (𝜑 → dom 𝐵 = 𝐷) |
| 17 | 15, 16 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| 18 | 17 | biantrurd 532 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
| 19 | iscgrgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 20 | iscgrg.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 21 | iscgrg.e | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
| 22 | 3, 20, 21 | iscgrg 28510 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
| 23 | 19, 22 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
| 24 | 14, 18, 23 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 dom cdm 5621 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑pm cpm 8760 ℝcr 11016 Basecbs 17127 distcds 17177 cgrGccgrg 28508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-pm 8762 df-cgrg 28509 |
| This theorem is referenced by: iscgrglt 28512 trgcgrg 28513 motcgrg 28542 |
| Copyright terms: Public domain | W3C validator |