![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscgrgd | Structured version Visualization version GIF version |
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
iscgrg.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgrg.m | ⊢ − = (dist‘𝐺) |
iscgrg.e | ⊢ ∼ = (cgrG‘𝐺) |
iscgrgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
iscgrgd.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
iscgrgd.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
iscgrgd.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
Ref | Expression |
---|---|
iscgrgd | ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgrgd.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) | |
2 | iscgrgd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
3 | iscgrg.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
4 | 3 | fvexi 6910 | . . . . . 6 ⊢ 𝑃 ∈ V |
5 | reex 11236 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | elpm2r 8864 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃 ↑pm ℝ)) | |
7 | 4, 5, 6 | mpanl12 700 | . . . . 5 ⊢ ((𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
8 | 1, 2, 7 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
9 | iscgrgd.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) | |
10 | elpm2r 8864 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃 ↑pm ℝ)) | |
11 | 4, 5, 10 | mpanl12 700 | . . . . 5 ⊢ ((𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
12 | 9, 2, 11 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
13 | 8, 12 | jca 510 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ))) |
14 | 13 | biantrurd 531 | . 2 ⊢ (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
15 | 1 | fdmd 6733 | . . . 4 ⊢ (𝜑 → dom 𝐴 = 𝐷) |
16 | 9 | fdmd 6733 | . . . 4 ⊢ (𝜑 → dom 𝐵 = 𝐷) |
17 | 15, 16 | eqtr4d 2768 | . . 3 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
18 | 17 | biantrurd 531 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
19 | iscgrgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
20 | iscgrg.m | . . . 4 ⊢ − = (dist‘𝐺) | |
21 | iscgrg.e | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
22 | 3, 20, 21 | iscgrg 28393 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
23 | 19, 22 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
24 | 14, 18, 23 | 3bitr4rd 311 | 1 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 Vcvv 3461 ⊆ wss 3944 class class class wbr 5149 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ↑pm cpm 8846 ℝcr 11144 Basecbs 17188 distcds 17250 cgrGccgrg 28391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-pm 8848 df-cgrg 28392 |
This theorem is referenced by: iscgrglt 28395 trgcgrg 28396 motcgrg 28425 |
Copyright terms: Public domain | W3C validator |