MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrgd Structured version   Visualization version   GIF version

Theorem iscgrgd 28446
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
iscgrg.p 𝑃 = (Base‘𝐺)
iscgrg.m = (dist‘𝐺)
iscgrg.e = (cgrG‘𝐺)
iscgrgd.g (𝜑𝐺𝑉)
iscgrgd.d (𝜑𝐷 ⊆ ℝ)
iscgrgd.a (𝜑𝐴:𝐷𝑃)
iscgrgd.b (𝜑𝐵:𝐷𝑃)
Assertion
Ref Expression
iscgrgd (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑃(𝑖,𝑗)   (𝑖,𝑗)   (𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem iscgrgd
StepHypRef Expression
1 iscgrgd.a . . . . 5 (𝜑𝐴:𝐷𝑃)
2 iscgrgd.d . . . . 5 (𝜑𝐷 ⊆ ℝ)
3 iscgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
43fvexi 6874 . . . . . 6 𝑃 ∈ V
5 reex 11165 . . . . . 6 ℝ ∈ V
6 elpm2r 8820 . . . . . 6 (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷𝑃𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃pm ℝ))
74, 5, 6mpanl12 702 . . . . 5 ((𝐴:𝐷𝑃𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃pm ℝ))
81, 2, 7syl2anc 584 . . . 4 (𝜑𝐴 ∈ (𝑃pm ℝ))
9 iscgrgd.b . . . . 5 (𝜑𝐵:𝐷𝑃)
10 elpm2r 8820 . . . . . 6 (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷𝑃𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃pm ℝ))
114, 5, 10mpanl12 702 . . . . 5 ((𝐵:𝐷𝑃𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃pm ℝ))
129, 2, 11syl2anc 584 . . . 4 (𝜑𝐵 ∈ (𝑃pm ℝ))
138, 12jca 511 . . 3 (𝜑 → (𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)))
1413biantrurd 532 . 2 (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))) ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
151fdmd 6700 . . . 4 (𝜑 → dom 𝐴 = 𝐷)
169fdmd 6700 . . . 4 (𝜑 → dom 𝐵 = 𝐷)
1715, 16eqtr4d 2768 . . 3 (𝜑 → dom 𝐴 = dom 𝐵)
1817biantrurd 532 . 2 (𝜑 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
19 iscgrgd.g . . 3 (𝜑𝐺𝑉)
20 iscgrg.m . . . 4 = (dist‘𝐺)
21 iscgrg.e . . . 4 = (cgrG‘𝐺)
223, 20, 21iscgrg 28445 . . 3 (𝐺𝑉 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
2319, 22syl 17 . 2 (𝜑 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
2414, 18, 233bitr4rd 312 1 (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3916   class class class wbr 5109  dom cdm 5640  wf 6509  cfv 6513  (class class class)co 7389  pm cpm 8802  cr 11073  Basecbs 17185  distcds 17235  cgrGccgrg 28443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-pm 8804  df-cgrg 28444
This theorem is referenced by:  iscgrglt  28447  trgcgrg  28448  motcgrg  28477
  Copyright terms: Public domain W3C validator