Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscgrgd | Structured version Visualization version GIF version |
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
iscgrg.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgrg.m | ⊢ − = (dist‘𝐺) |
iscgrg.e | ⊢ ∼ = (cgrG‘𝐺) |
iscgrgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
iscgrgd.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
iscgrgd.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
iscgrgd.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
Ref | Expression |
---|---|
iscgrgd | ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgrgd.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) | |
2 | iscgrgd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
3 | iscgrg.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
4 | 3 | fvexi 6770 | . . . . . 6 ⊢ 𝑃 ∈ V |
5 | reex 10893 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | elpm2r 8591 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃 ↑pm ℝ)) | |
7 | 4, 5, 6 | mpanl12 698 | . . . . 5 ⊢ ((𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
8 | 1, 2, 7 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
9 | iscgrgd.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) | |
10 | elpm2r 8591 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃 ↑pm ℝ)) | |
11 | 4, 5, 10 | mpanl12 698 | . . . . 5 ⊢ ((𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
12 | 9, 2, 11 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
13 | 8, 12 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ))) |
14 | 13 | biantrurd 532 | . 2 ⊢ (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
15 | 1 | fdmd 6595 | . . . 4 ⊢ (𝜑 → dom 𝐴 = 𝐷) |
16 | 9 | fdmd 6595 | . . . 4 ⊢ (𝜑 → dom 𝐵 = 𝐷) |
17 | 15, 16 | eqtr4d 2781 | . . 3 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
18 | 17 | biantrurd 532 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
19 | iscgrgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
20 | iscgrg.m | . . . 4 ⊢ − = (dist‘𝐺) | |
21 | iscgrg.e | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
22 | 3, 20, 21 | iscgrg 26777 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
23 | 19, 22 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
24 | 14, 18, 23 | 3bitr4rd 311 | 1 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℝcr 10801 Basecbs 16840 distcds 16897 cgrGccgrg 26775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-cgrg 26776 |
This theorem is referenced by: iscgrglt 26779 trgcgrg 26780 motcgrg 26809 |
Copyright terms: Public domain | W3C validator |