![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscgrgd | Structured version Visualization version GIF version |
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
iscgrg.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgrg.m | ⊢ − = (dist‘𝐺) |
iscgrg.e | ⊢ ∼ = (cgrG‘𝐺) |
iscgrgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
iscgrgd.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
iscgrgd.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
iscgrgd.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
Ref | Expression |
---|---|
iscgrgd | ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgrgd.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) | |
2 | iscgrgd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
3 | iscgrg.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
4 | 3 | fvexi 6928 | . . . . . 6 ⊢ 𝑃 ∈ V |
5 | reex 11253 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | elpm2r 8893 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃 ↑pm ℝ)) | |
7 | 4, 5, 6 | mpanl12 702 | . . . . 5 ⊢ ((𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
8 | 1, 2, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
9 | iscgrgd.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) | |
10 | elpm2r 8893 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃 ↑pm ℝ)) | |
11 | 4, 5, 10 | mpanl12 702 | . . . . 5 ⊢ ((𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
12 | 9, 2, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
13 | 8, 12 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ))) |
14 | 13 | biantrurd 532 | . 2 ⊢ (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
15 | 1 | fdmd 6754 | . . . 4 ⊢ (𝜑 → dom 𝐴 = 𝐷) |
16 | 9 | fdmd 6754 | . . . 4 ⊢ (𝜑 → dom 𝐵 = 𝐷) |
17 | 15, 16 | eqtr4d 2780 | . . 3 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
18 | 17 | biantrurd 532 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
19 | iscgrgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
20 | iscgrg.m | . . . 4 ⊢ − = (dist‘𝐺) | |
21 | iscgrg.e | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
22 | 3, 20, 21 | iscgrg 28546 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
23 | 19, 22 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
24 | 14, 18, 23 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 ⊆ wss 3966 class class class wbr 5151 dom cdm 5693 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ↑pm cpm 8875 ℝcr 11161 Basecbs 17254 distcds 17316 cgrGccgrg 28544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-pm 8877 df-cgrg 28545 |
This theorem is referenced by: iscgrglt 28548 trgcgrg 28549 motcgrg 28578 |
Copyright terms: Public domain | W3C validator |