MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrgd Structured version   Visualization version   GIF version

Theorem iscgrgd 26874
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
iscgrg.p 𝑃 = (Base‘𝐺)
iscgrg.m = (dist‘𝐺)
iscgrg.e = (cgrG‘𝐺)
iscgrgd.g (𝜑𝐺𝑉)
iscgrgd.d (𝜑𝐷 ⊆ ℝ)
iscgrgd.a (𝜑𝐴:𝐷𝑃)
iscgrgd.b (𝜑𝐵:𝐷𝑃)
Assertion
Ref Expression
iscgrgd (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑃(𝑖,𝑗)   (𝑖,𝑗)   (𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem iscgrgd
StepHypRef Expression
1 iscgrgd.a . . . . 5 (𝜑𝐴:𝐷𝑃)
2 iscgrgd.d . . . . 5 (𝜑𝐷 ⊆ ℝ)
3 iscgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
43fvexi 6788 . . . . . 6 𝑃 ∈ V
5 reex 10962 . . . . . 6 ℝ ∈ V
6 elpm2r 8633 . . . . . 6 (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷𝑃𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃pm ℝ))
74, 5, 6mpanl12 699 . . . . 5 ((𝐴:𝐷𝑃𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃pm ℝ))
81, 2, 7syl2anc 584 . . . 4 (𝜑𝐴 ∈ (𝑃pm ℝ))
9 iscgrgd.b . . . . 5 (𝜑𝐵:𝐷𝑃)
10 elpm2r 8633 . . . . . 6 (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷𝑃𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃pm ℝ))
114, 5, 10mpanl12 699 . . . . 5 ((𝐵:𝐷𝑃𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃pm ℝ))
129, 2, 11syl2anc 584 . . . 4 (𝜑𝐵 ∈ (𝑃pm ℝ))
138, 12jca 512 . . 3 (𝜑 → (𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)))
1413biantrurd 533 . 2 (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))) ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
151fdmd 6611 . . . 4 (𝜑 → dom 𝐴 = 𝐷)
169fdmd 6611 . . . 4 (𝜑 → dom 𝐵 = 𝐷)
1715, 16eqtr4d 2781 . . 3 (𝜑 → dom 𝐴 = dom 𝐵)
1817biantrurd 533 . 2 (𝜑 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
19 iscgrgd.g . . 3 (𝜑𝐺𝑉)
20 iscgrg.m . . . 4 = (dist‘𝐺)
21 iscgrg.e . . . 4 = (cgrG‘𝐺)
223, 20, 21iscgrg 26873 . . 3 (𝐺𝑉 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
2319, 22syl 17 . 2 (𝜑 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
2414, 18, 233bitr4rd 312 1 (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cr 10870  Basecbs 16912  distcds 16971  cgrGccgrg 26871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618  df-cgrg 26872
This theorem is referenced by:  iscgrglt  26875  trgcgrg  26876  motcgrg  26905
  Copyright terms: Public domain W3C validator