MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrgd Structured version   Visualization version   GIF version

Theorem iscgrgd 28394
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
iscgrg.p 𝑃 = (Base‘𝐺)
iscgrg.m = (dist‘𝐺)
iscgrg.e = (cgrG‘𝐺)
iscgrgd.g (𝜑𝐺𝑉)
iscgrgd.d (𝜑𝐷 ⊆ ℝ)
iscgrgd.a (𝜑𝐴:𝐷𝑃)
iscgrgd.b (𝜑𝐵:𝐷𝑃)
Assertion
Ref Expression
iscgrgd (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑃(𝑖,𝑗)   (𝑖,𝑗)   (𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem iscgrgd
StepHypRef Expression
1 iscgrgd.a . . . . 5 (𝜑𝐴:𝐷𝑃)
2 iscgrgd.d . . . . 5 (𝜑𝐷 ⊆ ℝ)
3 iscgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
43fvexi 6910 . . . . . 6 𝑃 ∈ V
5 reex 11236 . . . . . 6 ℝ ∈ V
6 elpm2r 8864 . . . . . 6 (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷𝑃𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃pm ℝ))
74, 5, 6mpanl12 700 . . . . 5 ((𝐴:𝐷𝑃𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃pm ℝ))
81, 2, 7syl2anc 582 . . . 4 (𝜑𝐴 ∈ (𝑃pm ℝ))
9 iscgrgd.b . . . . 5 (𝜑𝐵:𝐷𝑃)
10 elpm2r 8864 . . . . . 6 (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷𝑃𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃pm ℝ))
114, 5, 10mpanl12 700 . . . . 5 ((𝐵:𝐷𝑃𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃pm ℝ))
129, 2, 11syl2anc 582 . . . 4 (𝜑𝐵 ∈ (𝑃pm ℝ))
138, 12jca 510 . . 3 (𝜑 → (𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)))
1413biantrurd 531 . 2 (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))) ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
151fdmd 6733 . . . 4 (𝜑 → dom 𝐴 = 𝐷)
169fdmd 6733 . . . 4 (𝜑 → dom 𝐵 = 𝐷)
1715, 16eqtr4d 2768 . . 3 (𝜑 → dom 𝐴 = dom 𝐵)
1817biantrurd 531 . 2 (𝜑 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
19 iscgrgd.g . . 3 (𝜑𝐺𝑉)
20 iscgrg.m . . . 4 = (dist‘𝐺)
21 iscgrg.e . . . 4 = (cgrG‘𝐺)
223, 20, 21iscgrg 28393 . . 3 (𝐺𝑉 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
2319, 22syl 17 . 2 (𝜑 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
2414, 18, 233bitr4rd 311 1 (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  wss 3944   class class class wbr 5149  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  pm cpm 8846  cr 11144  Basecbs 17188  distcds 17250  cgrGccgrg 28391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-pm 8848  df-cgrg 28392
This theorem is referenced by:  iscgrglt  28395  trgcgrg  28396  motcgrg  28425
  Copyright terms: Public domain W3C validator