![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscgrgd | Structured version Visualization version GIF version |
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
iscgrg.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgrg.m | ⊢ − = (dist‘𝐺) |
iscgrg.e | ⊢ ∼ = (cgrG‘𝐺) |
iscgrgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
iscgrgd.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
iscgrgd.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
iscgrgd.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
Ref | Expression |
---|---|
iscgrgd | ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgrgd.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐷⟶𝑃) | |
2 | iscgrgd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
3 | iscgrg.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝐺) | |
4 | 3 | fvexi 6936 | . . . . . 6 ⊢ 𝑃 ∈ V |
5 | reex 11277 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | elpm2r 8905 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐴 ∈ (𝑃 ↑pm ℝ)) | |
7 | 4, 5, 6 | mpanl12 701 | . . . . 5 ⊢ ((𝐴:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
8 | 1, 2, 7 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑃 ↑pm ℝ)) |
9 | iscgrgd.b | . . . . 5 ⊢ (𝜑 → 𝐵:𝐷⟶𝑃) | |
10 | elpm2r 8905 | . . . . . 6 ⊢ (((𝑃 ∈ V ∧ ℝ ∈ V) ∧ (𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ)) → 𝐵 ∈ (𝑃 ↑pm ℝ)) | |
11 | 4, 5, 10 | mpanl12 701 | . . . . 5 ⊢ ((𝐵:𝐷⟶𝑃 ∧ 𝐷 ⊆ ℝ) → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
12 | 9, 2, 11 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑃 ↑pm ℝ)) |
13 | 8, 12 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ))) |
14 | 13 | biantrurd 532 | . 2 ⊢ (𝜑 → ((dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
15 | 1 | fdmd 6759 | . . . 4 ⊢ (𝜑 → dom 𝐴 = 𝐷) |
16 | 9 | fdmd 6759 | . . . 4 ⊢ (𝜑 → dom 𝐵 = 𝐷) |
17 | 15, 16 | eqtr4d 2783 | . . 3 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
18 | 17 | biantrurd 532 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
19 | iscgrgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
20 | iscgrg.m | . . . 4 ⊢ − = (dist‘𝐺) | |
21 | iscgrg.e | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
22 | 3, 20, 21 | iscgrg 28540 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
23 | 19, 22 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ (𝑃 ↑pm ℝ) ∧ 𝐵 ∈ (𝑃 ↑pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))))) |
24 | 14, 18, 23 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ↑pm cpm 8887 ℝcr 11185 Basecbs 17260 distcds 17322 cgrGccgrg 28538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-pm 8889 df-cgrg 28539 |
This theorem is referenced by: iscgrglt 28542 trgcgrg 28543 motcgrg 28572 |
Copyright terms: Public domain | W3C validator |