MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgrg Structured version   Visualization version   GIF version

Theorem motcgrg 27486
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motcgrg.r = (cgrG‘𝐺)
motcgrg.t (𝜑𝑇 ∈ Word 𝑃)
motcgrg.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgrg (𝜑 → (𝐹𝑇) 𝑇)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑇(𝑓,𝑔)   𝐹(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motcgrg
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃)
21adantr 481 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑇:(0..^𝑛)⟶𝑃)
3 simprl 769 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ dom (𝐹𝑇))
4 ismot.p . . . . . . . . . . . . . 14 𝑃 = (Base‘𝐺)
5 ismot.m . . . . . . . . . . . . . 14 = (dist‘𝐺)
6 motgrp.1 . . . . . . . . . . . . . 14 (𝜑𝐺𝑉)
7 motcgrg.f . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
84, 5, 6, 7motf1o 27480 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃1-1-onto𝑃)
9 f1of 6784 . . . . . . . . . . . . 13 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
108, 9syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝑃𝑃)
1110ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃𝑃)
12 fco 6692 . . . . . . . . . . 11 ((𝐹:𝑃𝑃𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1311, 1, 12syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1413adantr 481 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1514fdmd 6679 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → dom (𝐹𝑇) = (0..^𝑛))
163, 15eleqtrd 2840 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ (0..^𝑛))
17 fvco3 6940 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑎 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
182, 16, 17syl2anc 584 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
19 simprr 771 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ dom (𝐹𝑇))
2019, 15eleqtrd 2840 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ (0..^𝑛))
21 fvco3 6940 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑏 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
222, 20, 21syl2anc 584 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
2318, 22oveq12d 7375 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))))
246ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺𝑉)
2524adantr 481 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐺𝑉)
262, 16ffvelcdmd 7036 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑎) ∈ 𝑃)
272, 20ffvelcdmd 7036 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑏) ∈ 𝑃)
287ad3antrrr 728 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺))
294, 5, 25, 26, 27, 28motcgr 27478 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))) = ((𝑇𝑎) (𝑇𝑏)))
3023, 29eqtrd 2776 . . . 4 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
3130ralrimivva 3197 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
32 motcgrg.r . . . 4 = (cgrG‘𝐺)
33 fzo0ssnn0 13653 . . . . . 6 (0..^𝑛) ⊆ ℕ0
34 nn0ssre 12417 . . . . . 6 0 ⊆ ℝ
3533, 34sstri 3953 . . . . 5 (0..^𝑛) ⊆ ℝ
3635a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ)
374, 5, 32, 24, 36, 13, 1iscgrgd 27455 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹𝑇) 𝑇 ↔ ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏))))
3831, 37mpbird 256 . 2 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇) 𝑇)
39 motcgrg.t . . 3 (𝜑𝑇 ∈ Word 𝑃)
40 iswrd 14404 . . 3 (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4139, 40sylib 217 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4238, 41r19.29a 3159 1 (𝜑 → (𝐹𝑇) 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910  {cpr 4588  cop 4592   class class class wbr 5105  dom cdm 5633  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359  cr 11050  0cc0 11051  0cn0 12413  ..^cfzo 13567  Word cword 14402  ndxcnx 17065  Basecbs 17083  +gcplusg 17133  distcds 17142  cgrGccgrg 27452  Ismtcismt 27474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-word 14403  df-cgrg 27453  df-ismt 27475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator