MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgrg Structured version   Visualization version   GIF version

Theorem motcgrg 28522
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motcgrg.r = (cgrG‘𝐺)
motcgrg.t (𝜑𝑇 ∈ Word 𝑃)
motcgrg.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgrg (𝜑 → (𝐹𝑇) 𝑇)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑇(𝑓,𝑔)   𝐹(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motcgrg
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃)
21adantr 480 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑇:(0..^𝑛)⟶𝑃)
3 simprl 770 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ dom (𝐹𝑇))
4 ismot.p . . . . . . . . . . . . . 14 𝑃 = (Base‘𝐺)
5 ismot.m . . . . . . . . . . . . . 14 = (dist‘𝐺)
6 motgrp.1 . . . . . . . . . . . . . 14 (𝜑𝐺𝑉)
7 motcgrg.f . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
84, 5, 6, 7motf1o 28516 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃1-1-onto𝑃)
9 f1of 6763 . . . . . . . . . . . . 13 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
108, 9syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝑃𝑃)
1110ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃𝑃)
12 fco 6675 . . . . . . . . . . 11 ((𝐹:𝑃𝑃𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1311, 1, 12syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1413adantr 480 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1514fdmd 6661 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → dom (𝐹𝑇) = (0..^𝑛))
163, 15eleqtrd 2833 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ (0..^𝑛))
17 fvco3 6921 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑎 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
182, 16, 17syl2anc 584 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
19 simprr 772 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ dom (𝐹𝑇))
2019, 15eleqtrd 2833 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ (0..^𝑛))
21 fvco3 6921 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑏 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
222, 20, 21syl2anc 584 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
2318, 22oveq12d 7364 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))))
246ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺𝑉)
2524adantr 480 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐺𝑉)
262, 16ffvelcdmd 7018 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑎) ∈ 𝑃)
272, 20ffvelcdmd 7018 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑏) ∈ 𝑃)
287ad3antrrr 730 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺))
294, 5, 25, 26, 27, 28motcgr 28514 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))) = ((𝑇𝑎) (𝑇𝑏)))
3023, 29eqtrd 2766 . . . 4 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
3130ralrimivva 3175 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
32 motcgrg.r . . . 4 = (cgrG‘𝐺)
33 fzo0ssnn0 13646 . . . . . 6 (0..^𝑛) ⊆ ℕ0
34 nn0ssre 12385 . . . . . 6 0 ⊆ ℝ
3533, 34sstri 3939 . . . . 5 (0..^𝑛) ⊆ ℝ
3635a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ)
374, 5, 32, 24, 36, 13, 1iscgrgd 28491 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹𝑇) 𝑇 ↔ ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏))))
3831, 37mpbird 257 . 2 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇) 𝑇)
39 motcgrg.t . . 3 (𝜑𝑇 ∈ Word 𝑃)
40 iswrd 14422 . . 3 (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4139, 40sylib 218 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4238, 41r19.29a 3140 1 (𝜑 → (𝐹𝑇) 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  {cpr 4575  cop 4579   class class class wbr 5089  dom cdm 5614  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  cr 11005  0cc0 11006  0cn0 12381  ..^cfzo 13554  Word cword 14420  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  distcds 17170  cgrGccgrg 28488  Ismtcismt 28510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-word 14421  df-cgrg 28489  df-ismt 28511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator