MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgrg Structured version   Visualization version   GIF version

Theorem motcgrg 26589
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motcgrg.r = (cgrG‘𝐺)
motcgrg.t (𝜑𝑇 ∈ Word 𝑃)
motcgrg.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgrg (𝜑 → (𝐹𝑇) 𝑇)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑇(𝑓,𝑔)   𝐹(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motcgrg
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃)
21adantr 484 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑇:(0..^𝑛)⟶𝑃)
3 simprl 771 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ dom (𝐹𝑇))
4 ismot.p . . . . . . . . . . . . . 14 𝑃 = (Base‘𝐺)
5 ismot.m . . . . . . . . . . . . . 14 = (dist‘𝐺)
6 motgrp.1 . . . . . . . . . . . . . 14 (𝜑𝐺𝑉)
7 motcgrg.f . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
84, 5, 6, 7motf1o 26583 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃1-1-onto𝑃)
9 f1of 6639 . . . . . . . . . . . . 13 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
108, 9syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝑃𝑃)
1110ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃𝑃)
12 fco 6547 . . . . . . . . . . 11 ((𝐹:𝑃𝑃𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1311, 1, 12syl2anc 587 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1413adantr 484 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1514fdmd 6534 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → dom (𝐹𝑇) = (0..^𝑛))
163, 15eleqtrd 2833 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ (0..^𝑛))
17 fvco3 6788 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑎 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
182, 16, 17syl2anc 587 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
19 simprr 773 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ dom (𝐹𝑇))
2019, 15eleqtrd 2833 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ (0..^𝑛))
21 fvco3 6788 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑏 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
222, 20, 21syl2anc 587 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
2318, 22oveq12d 7209 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))))
246ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺𝑉)
2524adantr 484 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐺𝑉)
262, 16ffvelrnd 6883 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑎) ∈ 𝑃)
272, 20ffvelrnd 6883 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑏) ∈ 𝑃)
287ad3antrrr 730 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺))
294, 5, 25, 26, 27, 28motcgr 26581 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))) = ((𝑇𝑎) (𝑇𝑏)))
3023, 29eqtrd 2771 . . . 4 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
3130ralrimivva 3102 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
32 motcgrg.r . . . 4 = (cgrG‘𝐺)
33 fzo0ssnn0 13288 . . . . . 6 (0..^𝑛) ⊆ ℕ0
34 nn0ssre 12059 . . . . . 6 0 ⊆ ℝ
3533, 34sstri 3896 . . . . 5 (0..^𝑛) ⊆ ℝ
3635a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ)
374, 5, 32, 24, 36, 13, 1iscgrgd 26558 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹𝑇) 𝑇 ↔ ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏))))
3831, 37mpbird 260 . 2 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇) 𝑇)
39 motcgrg.t . . 3 (𝜑𝑇 ∈ Word 𝑃)
40 iswrd 14036 . . 3 (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4139, 40sylib 221 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4238, 41r19.29a 3198 1 (𝜑 → (𝐹𝑇) 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  wss 3853  {cpr 4529  cop 4533   class class class wbr 5039  dom cdm 5536  ccom 5540  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  cmpo 7193  cr 10693  0cc0 10694  0cn0 12055  ..^cfzo 13203  Word cword 14034  ndxcnx 16663  Basecbs 16666  +gcplusg 16749  distcds 16758  cgrGccgrg 26555  Ismtcismt 26577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-word 14035  df-cgrg 26556  df-ismt 26578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator