Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃) |
2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑇:(0..^𝑛)⟶𝑃) |
3 | | simprl 767 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑎 ∈ dom (𝐹 ∘ 𝑇)) |
4 | | ismot.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (Base‘𝐺) |
5 | | ismot.m |
. . . . . . . . . . . . . 14
⊢ − =
(dist‘𝐺) |
6 | | motgrp.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
7 | | motcgrg.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
8 | 4, 5, 6, 7 | motf1o 26803 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
9 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑃–1-1-onto→𝑃 → 𝐹:𝑃⟶𝑃) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑃⟶𝑃) |
11 | 10 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃⟶𝑃) |
12 | | fco 6608 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑃⟶𝑃 ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃) |
13 | 11, 1, 12 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (𝐹 ∘ 𝑇):(0..^𝑛)⟶𝑃) |
15 | 14 | fdmd 6595 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → dom (𝐹 ∘ 𝑇) = (0..^𝑛)) |
16 | 3, 15 | eleqtrd 2841 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑎 ∈ (0..^𝑛)) |
17 | | fvco3 6849 |
. . . . . . 7
⊢ ((𝑇:(0..^𝑛)⟶𝑃 ∧ 𝑎 ∈ (0..^𝑛)) → ((𝐹 ∘ 𝑇)‘𝑎) = (𝐹‘(𝑇‘𝑎))) |
18 | 2, 16, 17 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → ((𝐹 ∘ 𝑇)‘𝑎) = (𝐹‘(𝑇‘𝑎))) |
19 | | simprr 769 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑏 ∈ dom (𝐹 ∘ 𝑇)) |
20 | 19, 15 | eleqtrd 2841 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝑏 ∈ (0..^𝑛)) |
21 | | fvco3 6849 |
. . . . . . 7
⊢ ((𝑇:(0..^𝑛)⟶𝑃 ∧ 𝑏 ∈ (0..^𝑛)) → ((𝐹 ∘ 𝑇)‘𝑏) = (𝐹‘(𝑇‘𝑏))) |
22 | 2, 20, 21 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → ((𝐹 ∘ 𝑇)‘𝑏) = (𝐹‘(𝑇‘𝑏))) |
23 | 18, 22 | oveq12d 7273 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝐹‘(𝑇‘𝑎)) − (𝐹‘(𝑇‘𝑏)))) |
24 | 6 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺 ∈ 𝑉) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝐺 ∈ 𝑉) |
26 | 2, 16 | ffvelrnd 6944 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (𝑇‘𝑎) ∈ 𝑃) |
27 | 2, 20 | ffvelrnd 6944 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (𝑇‘𝑏) ∈ 𝑃) |
28 | 7 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺)) |
29 | 4, 5, 25, 26, 27, 28 | motcgr 26801 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → ((𝐹‘(𝑇‘𝑎)) − (𝐹‘(𝑇‘𝑏))) = ((𝑇‘𝑎) − (𝑇‘𝑏))) |
30 | 23, 29 | eqtrd 2778 |
. . . 4
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹 ∘ 𝑇) ∧ 𝑏 ∈ dom (𝐹 ∘ 𝑇))) → (((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝑇‘𝑎) − (𝑇‘𝑏))) |
31 | 30 | ralrimivva 3114 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹 ∘ 𝑇)∀𝑏 ∈ dom (𝐹 ∘ 𝑇)(((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝑇‘𝑎) − (𝑇‘𝑏))) |
32 | | motcgrg.r |
. . . 4
⊢ ∼ =
(cgrG‘𝐺) |
33 | | fzo0ssnn0 13396 |
. . . . . 6
⊢
(0..^𝑛) ⊆
ℕ0 |
34 | | nn0ssre 12167 |
. . . . . 6
⊢
ℕ0 ⊆ ℝ |
35 | 33, 34 | sstri 3926 |
. . . . 5
⊢
(0..^𝑛) ⊆
ℝ |
36 | 35 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ) |
37 | 4, 5, 32, 24, 36, 13, 1 | iscgrgd 26778 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹 ∘ 𝑇) ∼ 𝑇 ↔ ∀𝑎 ∈ dom (𝐹 ∘ 𝑇)∀𝑏 ∈ dom (𝐹 ∘ 𝑇)(((𝐹 ∘ 𝑇)‘𝑎) − ((𝐹 ∘ 𝑇)‘𝑏)) = ((𝑇‘𝑎) − (𝑇‘𝑏)))) |
38 | 31, 37 | mpbird 256 |
. 2
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹 ∘ 𝑇) ∼ 𝑇) |
39 | | motcgrg.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ Word 𝑃) |
40 | | iswrd 14147 |
. . 3
⊢ (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃) |
41 | 39, 40 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃) |
42 | 38, 41 | r19.29a 3217 |
1
⊢ (𝜑 → (𝐹 ∘ 𝑇) ∼ 𝑇) |