MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgrg Structured version   Visualization version   GIF version

Theorem motcgrg 28489
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motcgrg.r = (cgrG‘𝐺)
motcgrg.t (𝜑𝑇 ∈ Word 𝑃)
motcgrg.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgrg (𝜑 → (𝐹𝑇) 𝑇)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑇(𝑓,𝑔)   𝐹(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motcgrg
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃)
21adantr 480 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑇:(0..^𝑛)⟶𝑃)
3 simprl 770 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ dom (𝐹𝑇))
4 ismot.p . . . . . . . . . . . . . 14 𝑃 = (Base‘𝐺)
5 ismot.m . . . . . . . . . . . . . 14 = (dist‘𝐺)
6 motgrp.1 . . . . . . . . . . . . . 14 (𝜑𝐺𝑉)
7 motcgrg.f . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
84, 5, 6, 7motf1o 28483 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃1-1-onto𝑃)
9 f1of 6764 . . . . . . . . . . . . 13 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
108, 9syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝑃𝑃)
1110ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃𝑃)
12 fco 6676 . . . . . . . . . . 11 ((𝐹:𝑃𝑃𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1311, 1, 12syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1413adantr 480 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1514fdmd 6662 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → dom (𝐹𝑇) = (0..^𝑛))
163, 15eleqtrd 2830 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ (0..^𝑛))
17 fvco3 6922 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑎 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
182, 16, 17syl2anc 584 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
19 simprr 772 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ dom (𝐹𝑇))
2019, 15eleqtrd 2830 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ (0..^𝑛))
21 fvco3 6922 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑏 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
222, 20, 21syl2anc 584 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
2318, 22oveq12d 7367 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))))
246ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺𝑉)
2524adantr 480 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐺𝑉)
262, 16ffvelcdmd 7019 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑎) ∈ 𝑃)
272, 20ffvelcdmd 7019 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑏) ∈ 𝑃)
287ad3antrrr 730 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺))
294, 5, 25, 26, 27, 28motcgr 28481 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))) = ((𝑇𝑎) (𝑇𝑏)))
3023, 29eqtrd 2764 . . . 4 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
3130ralrimivva 3172 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
32 motcgrg.r . . . 4 = (cgrG‘𝐺)
33 fzo0ssnn0 13649 . . . . . 6 (0..^𝑛) ⊆ ℕ0
34 nn0ssre 12388 . . . . . 6 0 ⊆ ℝ
3533, 34sstri 3945 . . . . 5 (0..^𝑛) ⊆ ℝ
3635a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ)
374, 5, 32, 24, 36, 13, 1iscgrgd 28458 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹𝑇) 𝑇 ↔ ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏))))
3831, 37mpbird 257 . 2 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇) 𝑇)
39 motcgrg.t . . 3 (𝜑𝑇 ∈ Word 𝑃)
40 iswrd 14422 . . 3 (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4139, 40sylib 218 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4238, 41r19.29a 3137 1 (𝜑 → (𝐹𝑇) 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903  {cpr 4579  cop 4583   class class class wbr 5092  dom cdm 5619  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  0cc0 11009  0cn0 12384  ..^cfzo 13557  Word cword 14420  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  distcds 17170  cgrGccgrg 28455  Ismtcismt 28477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-word 14421  df-cgrg 28456  df-ismt 28478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator