MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf 28372
Description: 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlkclwwlkf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 eqid 2738 . . . . 5 (1st𝑐) = (1st𝑐)
3 eqid 2738 . . . . 5 (2nd𝑐) = (2nd𝑐)
41, 2, 3clwlkclwwlkflem 28368 . . . 4 (𝑐𝐶 → ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ))
5 isclwlk 28141 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) ↔ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))))
6 fvex 6787 . . . . . . . . 9 (1st𝑐) ∈ V
7 breq1 5077 . . . . . . . . 9 (𝑓 = (1st𝑐) → (𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ (1st𝑐)(ClWalks‘𝐺)(2nd𝑐)))
86, 7spcev 3545 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
95, 8sylbir 234 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1093adant3 1131 . . . . . 6 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1110adantl 482 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
12 simpl 483 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 𝐺 ∈ USPGraph)
13 eqid 2738 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1413wlkpwrd 27984 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1132 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
1615adantl 482 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
17 elnnnn0c 12278 . . . . . . . . . 10 ((♯‘(1st𝑐)) ∈ ℕ ↔ ((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))))
18 nn0re 12242 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℕ0 → (♯‘(1st𝑐)) ∈ ℝ)
19 1e2m1 12100 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
2019breq1i 5081 . . . . . . . . . . . . . . . 16 (1 ≤ (♯‘(1st𝑐)) ↔ (2 − 1) ≤ (♯‘(1st𝑐)))
2120biimpi 215 . . . . . . . . . . . . . . 15 (1 ≤ (♯‘(1st𝑐)) → (2 − 1) ≤ (♯‘(1st𝑐)))
22 2re 12047 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
23 1re 10975 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
24 lesubadd 11447 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘(1st𝑐)) ∈ ℝ) → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2522, 23, 24mp3an12 1450 . . . . . . . . . . . . . . 15 ((♯‘(1st𝑐)) ∈ ℝ → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2621, 25syl5ib 243 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℝ → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2718, 26syl 17 . . . . . . . . . . . . 13 ((♯‘(1st𝑐)) ∈ ℕ0 → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2827adantl 482 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
29 wlklenvp1 27985 . . . . . . . . . . . . . 14 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3029adantr 481 . . . . . . . . . . . . 13 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3130breq2d 5086 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (2 ≤ (♯‘(2nd𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
3228, 31sylibrd 258 . . . . . . . . . . 11 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ (♯‘(2nd𝑐))))
3332expimpd 454 . . . . . . . . . 10 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))) → 2 ≤ (♯‘(2nd𝑐))))
3417, 33syl5bi 241 . . . . . . . . 9 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐))))
3534a1d 25 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐)))))
36353imp 1110 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → 2 ≤ (♯‘(2nd𝑐)))
3736adantl 482 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 2 ≤ (♯‘(2nd𝑐)))
38 eqid 2738 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3913, 38clwlkclwwlk 28366 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘(2nd𝑐))) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4012, 16, 37, 39syl3anc 1370 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4111, 40mpbid 231 . . . 4 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
424, 41sylan2 593 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
4342simprd 496 . 2 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))
44 clwlkclwwlkf.f . 2 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
4543, 44fmptd 6988 1 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {crab 3068   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  chash 14044  Word cword 14217  lastSclsw 14265   prefix cpfx 14383  Vtxcvtx 27366  iEdgciedg 27367  USPGraphcuspgr 27518  Walkscwlks 27963  ClWalkscclwlks 28138  ClWWalkscclwwlk 28345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-substr 14354  df-pfx 14384  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-uspgr 27520  df-wlks 27966  df-clwlks 28139  df-clwwlk 28346
This theorem is referenced by:  clwlkclwwlkfo  28373  clwlkclwwlkf1  28374
  Copyright terms: Public domain W3C validator