MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf 29944
Description: 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlkclwwlkf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 eqid 2730 . . . . 5 (1st𝑐) = (1st𝑐)
3 eqid 2730 . . . . 5 (2nd𝑐) = (2nd𝑐)
41, 2, 3clwlkclwwlkflem 29940 . . . 4 (𝑐𝐶 → ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ))
5 isclwlk 29710 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) ↔ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))))
6 fvex 6874 . . . . . . . . 9 (1st𝑐) ∈ V
7 breq1 5113 . . . . . . . . 9 (𝑓 = (1st𝑐) → (𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ (1st𝑐)(ClWalks‘𝐺)(2nd𝑐)))
86, 7spcev 3575 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
95, 8sylbir 235 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1093adant3 1132 . . . . . 6 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1110adantl 481 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
12 simpl 482 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 𝐺 ∈ USPGraph)
13 eqid 2730 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1413wlkpwrd 29552 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1133 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
1615adantl 481 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
17 elnnnn0c 12494 . . . . . . . . . 10 ((♯‘(1st𝑐)) ∈ ℕ ↔ ((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))))
18 nn0re 12458 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℕ0 → (♯‘(1st𝑐)) ∈ ℝ)
19 1e2m1 12315 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
2019breq1i 5117 . . . . . . . . . . . . . . . 16 (1 ≤ (♯‘(1st𝑐)) ↔ (2 − 1) ≤ (♯‘(1st𝑐)))
2120biimpi 216 . . . . . . . . . . . . . . 15 (1 ≤ (♯‘(1st𝑐)) → (2 − 1) ≤ (♯‘(1st𝑐)))
22 2re 12267 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
23 1re 11181 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
24 lesubadd 11657 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘(1st𝑐)) ∈ ℝ) → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2522, 23, 24mp3an12 1453 . . . . . . . . . . . . . . 15 ((♯‘(1st𝑐)) ∈ ℝ → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2621, 25imbitrid 244 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℝ → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2718, 26syl 17 . . . . . . . . . . . . 13 ((♯‘(1st𝑐)) ∈ ℕ0 → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2827adantl 481 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
29 wlklenvp1 29553 . . . . . . . . . . . . . 14 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3029adantr 480 . . . . . . . . . . . . 13 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3130breq2d 5122 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (2 ≤ (♯‘(2nd𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
3228, 31sylibrd 259 . . . . . . . . . . 11 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ (♯‘(2nd𝑐))))
3332expimpd 453 . . . . . . . . . 10 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))) → 2 ≤ (♯‘(2nd𝑐))))
3417, 33biimtrid 242 . . . . . . . . 9 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐))))
3534a1d 25 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐)))))
36353imp 1110 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → 2 ≤ (♯‘(2nd𝑐)))
3736adantl 481 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 2 ≤ (♯‘(2nd𝑐)))
38 eqid 2730 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3913, 38clwlkclwwlk 29938 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘(2nd𝑐))) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4012, 16, 37, 39syl3anc 1373 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4111, 40mpbid 232 . . . 4 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
424, 41sylan2 593 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
4342simprd 495 . 2 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))
44 clwlkclwwlkf.f . 2 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
4543, 44fmptd 7089 1 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {crab 3408   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  chash 14302  Word cword 14485  lastSclsw 14534   prefix cpfx 14642  Vtxcvtx 28930  iEdgciedg 28931  USPGraphcuspgr 29082  Walkscwlks 29531  ClWalkscclwlks 29707  ClWWalkscclwwlk 29917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-substr 14613  df-pfx 14643  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-wlks 29534  df-clwlks 29708  df-clwwlk 29918
This theorem is referenced by:  clwlkclwwlkfo  29945  clwlkclwwlkf1  29946
  Copyright terms: Public domain W3C validator