MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf 29874
Description: 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
clwlkclwwlkf.f 𝐹 = (𝑐 ∈ 𝐢 ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
Assertion
Ref Expression
clwlkclwwlkf (𝐺 ∈ USPGraph β†’ 𝐹:𝐢⟢(ClWWalksβ€˜πΊ))
Distinct variable groups:   𝑀,𝐺,𝑐   𝐢,𝑐
Allowed substitution hints:   𝐢(𝑀)   𝐹(𝑀,𝑐)

Proof of Theorem clwlkclwwlkf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
2 eqid 2725 . . . . 5 (1st β€˜π‘) = (1st β€˜π‘)
3 eqid 2725 . . . . 5 (2nd β€˜π‘) = (2nd β€˜π‘)
41, 2, 3clwlkclwwlkflem 29870 . . . 4 (𝑐 ∈ 𝐢 β†’ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•))
5 isclwlk 29643 . . . . . . . 8 ((1st β€˜π‘)(ClWalksβ€˜πΊ)(2nd β€˜π‘) ↔ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘)))))
6 fvex 6907 . . . . . . . . 9 (1st β€˜π‘) ∈ V
7 breq1 5151 . . . . . . . . 9 (𝑓 = (1st β€˜π‘) β†’ (𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘) ↔ (1st β€˜π‘)(ClWalksβ€˜πΊ)(2nd β€˜π‘)))
86, 7spcev 3591 . . . . . . . 8 ((1st β€˜π‘)(ClWalksβ€˜πΊ)(2nd β€˜π‘) β†’ βˆƒπ‘“ 𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘))
95, 8sylbir 234 . . . . . . 7 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘)))) β†’ βˆƒπ‘“ 𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘))
1093adant3 1129 . . . . . 6 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•) β†’ βˆƒπ‘“ 𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘))
1110adantl 480 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•)) β†’ βˆƒπ‘“ 𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘))
12 simpl 481 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•)) β†’ 𝐺 ∈ USPGraph)
13 eqid 2725 . . . . . . . . 9 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1413wlkpwrd 29487 . . . . . . . 8 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
15143ad2ant1 1130 . . . . . . 7 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
1615adantl 480 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•)) β†’ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ))
17 elnnnn0c 12547 . . . . . . . . . 10 ((β™―β€˜(1st β€˜π‘)) ∈ β„• ↔ ((β™―β€˜(1st β€˜π‘)) ∈ β„•0 ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))))
18 nn0re 12511 . . . . . . . . . . . . . 14 ((β™―β€˜(1st β€˜π‘)) ∈ β„•0 β†’ (β™―β€˜(1st β€˜π‘)) ∈ ℝ)
19 1e2m1 12369 . . . . . . . . . . . . . . . . 17 1 = (2 βˆ’ 1)
2019breq1i 5155 . . . . . . . . . . . . . . . 16 (1 ≀ (β™―β€˜(1st β€˜π‘)) ↔ (2 βˆ’ 1) ≀ (β™―β€˜(1st β€˜π‘)))
2120biimpi 215 . . . . . . . . . . . . . . 15 (1 ≀ (β™―β€˜(1st β€˜π‘)) β†’ (2 βˆ’ 1) ≀ (β™―β€˜(1st β€˜π‘)))
22 2re 12316 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
23 1re 11244 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
24 lesubadd 11716 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ (β™―β€˜(1st β€˜π‘)) ∈ ℝ) β†’ ((2 βˆ’ 1) ≀ (β™―β€˜(1st β€˜π‘)) ↔ 2 ≀ ((β™―β€˜(1st β€˜π‘)) + 1)))
2522, 23, 24mp3an12 1447 . . . . . . . . . . . . . . 15 ((β™―β€˜(1st β€˜π‘)) ∈ ℝ β†’ ((2 βˆ’ 1) ≀ (β™―β€˜(1st β€˜π‘)) ↔ 2 ≀ ((β™―β€˜(1st β€˜π‘)) + 1)))
2621, 25imbitrid 243 . . . . . . . . . . . . . 14 ((β™―β€˜(1st β€˜π‘)) ∈ ℝ β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) β†’ 2 ≀ ((β™―β€˜(1st β€˜π‘)) + 1)))
2718, 26syl 17 . . . . . . . . . . . . 13 ((β™―β€˜(1st β€˜π‘)) ∈ β„•0 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) β†’ 2 ≀ ((β™―β€˜(1st β€˜π‘)) + 1)))
2827adantl 480 . . . . . . . . . . . 12 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•0) β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) β†’ 2 ≀ ((β™―β€˜(1st β€˜π‘)) + 1)))
29 wlklenvp1 29488 . . . . . . . . . . . . . 14 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1))
3029adantr 479 . . . . . . . . . . . . 13 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•0) β†’ (β™―β€˜(2nd β€˜π‘)) = ((β™―β€˜(1st β€˜π‘)) + 1))
3130breq2d 5160 . . . . . . . . . . . 12 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•0) β†’ (2 ≀ (β™―β€˜(2nd β€˜π‘)) ↔ 2 ≀ ((β™―β€˜(1st β€˜π‘)) + 1)))
3228, 31sylibrd 258 . . . . . . . . . . 11 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•0) β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) β†’ 2 ≀ (β™―β€˜(2nd β€˜π‘))))
3332expimpd 452 . . . . . . . . . 10 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (((β™―β€˜(1st β€˜π‘)) ∈ β„•0 ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ 2 ≀ (β™―β€˜(2nd β€˜π‘))))
3417, 33biimtrid 241 . . . . . . . . 9 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ β„• β†’ 2 ≀ (β™―β€˜(2nd β€˜π‘))))
3534a1d 25 . . . . . . . 8 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) β†’ ((β™―β€˜(1st β€˜π‘)) ∈ β„• β†’ 2 ≀ (β™―β€˜(2nd β€˜π‘)))))
36353imp 1108 . . . . . . 7 (((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•) β†’ 2 ≀ (β™―β€˜(2nd β€˜π‘)))
3736adantl 480 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•)) β†’ 2 ≀ (β™―β€˜(2nd β€˜π‘)))
38 eqid 2725 . . . . . . 7 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
3913, 38clwlkclwwlk 29868 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (2nd β€˜π‘) ∈ Word (Vtxβ€˜πΊ) ∧ 2 ≀ (β™―β€˜(2nd β€˜π‘))) β†’ (βˆƒπ‘“ 𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘) ↔ ((lastSβ€˜(2nd β€˜π‘)) = ((2nd β€˜π‘)β€˜0) ∧ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) ∈ (ClWWalksβ€˜πΊ))))
4012, 16, 37, 39syl3anc 1368 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•)) β†’ (βˆƒπ‘“ 𝑓(ClWalksβ€˜πΊ)(2nd β€˜π‘) ↔ ((lastSβ€˜(2nd β€˜π‘)) = ((2nd β€˜π‘)β€˜0) ∧ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) ∈ (ClWWalksβ€˜πΊ))))
4111, 40mpbid 231 . . . 4 ((𝐺 ∈ USPGraph ∧ ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) ∧ ((2nd β€˜π‘)β€˜0) = ((2nd β€˜π‘)β€˜(β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) ∈ β„•)) β†’ ((lastSβ€˜(2nd β€˜π‘)) = ((2nd β€˜π‘)β€˜0) ∧ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) ∈ (ClWWalksβ€˜πΊ)))
424, 41sylan2 591 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑐 ∈ 𝐢) β†’ ((lastSβ€˜(2nd β€˜π‘)) = ((2nd β€˜π‘)β€˜0) ∧ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) ∈ (ClWWalksβ€˜πΊ)))
4342simprd 494 . 2 ((𝐺 ∈ USPGraph ∧ 𝑐 ∈ 𝐢) β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) ∈ (ClWWalksβ€˜πΊ))
44 clwlkclwwlkf.f . 2 𝐹 = (𝑐 ∈ 𝐢 ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
4543, 44fmptd 7121 1 (𝐺 ∈ USPGraph β†’ 𝐹:𝐢⟢(ClWWalksβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {crab 3419   class class class wbr 5148   ↦ cmpt 5231  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991  β„cr 11137  0cc0 11138  1c1 11139   + caddc 11141   ≀ cle 11279   βˆ’ cmin 11474  β„•cn 12242  2c2 12297  β„•0cn0 12502  β™―chash 14321  Word cword 14496  lastSclsw 14544   prefix cpfx 14652  Vtxcvtx 28865  iEdgciedg 28866  USPGraphcuspgr 29017  Walkscwlks 29466  ClWalkscclwlks 29640  ClWWalkscclwwlk 29847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-lsw 14545  df-substr 14623  df-pfx 14653  df-edg 28917  df-uhgr 28927  df-upgr 28951  df-uspgr 29019  df-wlks 29469  df-clwlks 29641  df-clwwlk 29848
This theorem is referenced by:  clwlkclwwlkfo  29875  clwlkclwwlkf1  29876
  Copyright terms: Public domain W3C validator