MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf 27771
Description: 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlkclwwlkf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 eqid 2821 . . . . 5 (1st𝑐) = (1st𝑐)
3 eqid 2821 . . . . 5 (2nd𝑐) = (2nd𝑐)
41, 2, 3clwlkclwwlkflem 27767 . . . 4 (𝑐𝐶 → ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ))
5 isclwlk 27540 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) ↔ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))))
6 fvex 6669 . . . . . . . . 9 (1st𝑐) ∈ V
7 breq1 5055 . . . . . . . . 9 (𝑓 = (1st𝑐) → (𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ (1st𝑐)(ClWalks‘𝐺)(2nd𝑐)))
86, 7spcev 3599 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
95, 8sylbir 237 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1093adant3 1128 . . . . . 6 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1110adantl 484 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
12 simpl 485 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 𝐺 ∈ USPGraph)
13 eqid 2821 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1413wlkpwrd 27385 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1129 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
1615adantl 484 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
17 elnnnn0c 11929 . . . . . . . . . 10 ((♯‘(1st𝑐)) ∈ ℕ ↔ ((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))))
18 nn0re 11893 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℕ0 → (♯‘(1st𝑐)) ∈ ℝ)
19 1e2m1 11751 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
2019breq1i 5059 . . . . . . . . . . . . . . . 16 (1 ≤ (♯‘(1st𝑐)) ↔ (2 − 1) ≤ (♯‘(1st𝑐)))
2120biimpi 218 . . . . . . . . . . . . . . 15 (1 ≤ (♯‘(1st𝑐)) → (2 − 1) ≤ (♯‘(1st𝑐)))
22 2re 11698 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
23 1re 10627 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
24 lesubadd 11098 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘(1st𝑐)) ∈ ℝ) → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2522, 23, 24mp3an12 1447 . . . . . . . . . . . . . . 15 ((♯‘(1st𝑐)) ∈ ℝ → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2621, 25syl5ib 246 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℝ → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2718, 26syl 17 . . . . . . . . . . . . 13 ((♯‘(1st𝑐)) ∈ ℕ0 → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2827adantl 484 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
29 wlklenvp1 27386 . . . . . . . . . . . . . 14 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3029adantr 483 . . . . . . . . . . . . 13 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3130breq2d 5064 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (2 ≤ (♯‘(2nd𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
3228, 31sylibrd 261 . . . . . . . . . . 11 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ (♯‘(2nd𝑐))))
3332expimpd 456 . . . . . . . . . 10 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))) → 2 ≤ (♯‘(2nd𝑐))))
3417, 33syl5bi 244 . . . . . . . . 9 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐))))
3534a1d 25 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐)))))
36353imp 1107 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → 2 ≤ (♯‘(2nd𝑐)))
3736adantl 484 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 2 ≤ (♯‘(2nd𝑐)))
38 eqid 2821 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3913, 38clwlkclwwlk 27765 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘(2nd𝑐))) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4012, 16, 37, 39syl3anc 1367 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4111, 40mpbid 234 . . . 4 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
424, 41sylan2 594 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
4342simprd 498 . 2 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))
44 clwlkclwwlkf.f . 2 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
4543, 44fmptd 6864 1 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {crab 3142   class class class wbr 5052  cmpt 5132  wf 6337  cfv 6341  (class class class)co 7142  1st c1st 7673  2nd c2nd 7674  cr 10522  0cc0 10523  1c1 10524   + caddc 10526  cle 10662  cmin 10856  cn 11624  2c2 11679  0cn0 11884  chash 13680  Word cword 13851  lastSclsw 13899   prefix cpfx 14017  Vtxcvtx 26767  iEdgciedg 26768  USPGraphcuspgr 26919  Walkscwlks 27364  ClWalkscclwlks 27537  ClWWalkscclwwlk 27744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-dju 9316  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-n0 11885  df-xnn0 11955  df-z 11969  df-uz 12231  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-lsw 13900  df-substr 13988  df-pfx 14018  df-edg 26819  df-uhgr 26829  df-upgr 26853  df-uspgr 26921  df-wlks 27367  df-clwlks 27538  df-clwwlk 27745
This theorem is referenced by:  clwlkclwwlkfo  27772  clwlkclwwlkf1  27773
  Copyright terms: Public domain W3C validator