![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptcfsupp | Structured version Visualization version GIF version |
Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
suppmptcfin.b | β’ π΅ = (Baseβπ) |
suppmptcfin.r | β’ π = (Scalarβπ) |
suppmptcfin.0 | β’ 0 = (0gβπ ) |
suppmptcfin.1 | β’ 1 = (1rβπ ) |
suppmptcfin.f | β’ πΉ = (π₯ β π β¦ if(π₯ = π, 1 , 0 )) |
Ref | Expression |
---|---|
mptcfsupp | β’ ((π β LMod β§ π β π« π΅ β§ π β π) β πΉ finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppmptcfin.f | . . . 4 β’ πΉ = (π₯ β π β¦ if(π₯ = π, 1 , 0 )) | |
2 | 1 | funmpt2 6587 | . . 3 β’ Fun πΉ |
3 | 2 | a1i 11 | . 2 β’ ((π β LMod β§ π β π« π΅ β§ π β π) β Fun πΉ) |
4 | suppmptcfin.b | . . 3 β’ π΅ = (Baseβπ) | |
5 | suppmptcfin.r | . . 3 β’ π = (Scalarβπ) | |
6 | suppmptcfin.0 | . . 3 β’ 0 = (0gβπ ) | |
7 | suppmptcfin.1 | . . 3 β’ 1 = (1rβπ ) | |
8 | 4, 5, 6, 7, 1 | suppmptcfin 47045 | . 2 β’ ((π β LMod β§ π β π« π΅ β§ π β π) β (πΉ supp 0 ) β Fin) |
9 | mptexg 7222 | . . . . 5 β’ (π β π« π΅ β (π₯ β π β¦ if(π₯ = π, 1 , 0 )) β V) | |
10 | 1, 9 | eqeltrid 2837 | . . . 4 β’ (π β π« π΅ β πΉ β V) |
11 | 10 | 3ad2ant2 1134 | . . 3 β’ ((π β LMod β§ π β π« π΅ β§ π β π) β πΉ β V) |
12 | 6 | fvexi 6905 | . . 3 β’ 0 β V |
13 | isfsupp 9364 | . . 3 β’ ((πΉ β V β§ 0 β V) β (πΉ finSupp 0 β (Fun πΉ β§ (πΉ supp 0 ) β Fin))) | |
14 | 11, 12, 13 | sylancl 586 | . 2 β’ ((π β LMod β§ π β π« π΅ β§ π β π) β (πΉ finSupp 0 β (Fun πΉ β§ (πΉ supp 0 ) β Fin))) |
15 | 3, 8, 14 | mpbir2and 711 | 1 β’ ((π β LMod β§ π β π« π΅ β§ π β π) β πΉ finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 ifcif 4528 π« cpw 4602 class class class wbr 5148 β¦ cmpt 5231 Fun wfun 6537 βcfv 6543 (class class class)co 7408 supp csupp 8145 Fincfn 8938 finSupp cfsupp 9360 Basecbs 17143 Scalarcsca 17199 0gc0g 17384 1rcur 20003 LModclmod 20470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-supp 8146 df-1o 8465 df-en 8939 df-fin 8942 df-fsupp 9361 |
This theorem is referenced by: lcoss 47107 el0ldep 47137 |
Copyright terms: Public domain | W3C validator |