| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptcfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| suppmptcfin.b | ⊢ 𝐵 = (Base‘𝑀) |
| suppmptcfin.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| suppmptcfin.0 | ⊢ 0 = (0g‘𝑅) |
| suppmptcfin.1 | ⊢ 1 = (1r‘𝑅) |
| suppmptcfin.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
| Ref | Expression |
|---|---|
| mptcfsupp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppmptcfin.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) | |
| 2 | 1 | funmpt2 6555 | . . 3 ⊢ Fun 𝐹 |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → Fun 𝐹) |
| 4 | suppmptcfin.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | suppmptcfin.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 6 | suppmptcfin.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 7 | suppmptcfin.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 8 | 4, 5, 6, 7, 1 | suppmptcfin 48361 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) |
| 9 | mptexg 7195 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ∈ V) | |
| 10 | 1, 9 | eqeltrid 2832 | . . . 4 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝐹 ∈ V) |
| 11 | 10 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) |
| 12 | 6 | fvexi 6872 | . . 3 ⊢ 0 ∈ V |
| 13 | isfsupp 9316 | . . 3 ⊢ ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) | |
| 14 | 11, 12, 13 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) |
| 15 | 3, 8, 14 | mpbir2and 713 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 1rcur 20090 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-1o 8434 df-en 8919 df-fin 8922 df-fsupp 9313 |
| This theorem is referenced by: lcoss 48422 el0ldep 48452 |
| Copyright terms: Public domain | W3C validator |