| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptcfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| suppmptcfin.b | ⊢ 𝐵 = (Base‘𝑀) |
| suppmptcfin.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| suppmptcfin.0 | ⊢ 0 = (0g‘𝑅) |
| suppmptcfin.1 | ⊢ 1 = (1r‘𝑅) |
| suppmptcfin.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
| Ref | Expression |
|---|---|
| mptcfsupp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppmptcfin.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) | |
| 2 | 1 | funmpt2 6525 | . . 3 ⊢ Fun 𝐹 |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → Fun 𝐹) |
| 4 | suppmptcfin.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | suppmptcfin.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 6 | suppmptcfin.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 7 | suppmptcfin.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 8 | 4, 5, 6, 7, 1 | suppmptcfin 48501 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) |
| 9 | mptexg 7161 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ∈ V) | |
| 10 | 1, 9 | eqeltrid 2837 | . . . 4 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝐹 ∈ V) |
| 11 | 10 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) |
| 12 | 6 | fvexi 6842 | . . 3 ⊢ 0 ∈ V |
| 13 | isfsupp 9256 | . . 3 ⊢ ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) | |
| 14 | 11, 12, 13 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) |
| 15 | 3, 8, 14 | mpbir2and 713 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4474 𝒫 cpw 4549 class class class wbr 5093 ↦ cmpt 5174 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 supp csupp 8096 Fincfn 8875 finSupp cfsupp 9252 Basecbs 17122 Scalarcsca 17166 0gc0g 17345 1rcur 20101 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-supp 8097 df-1o 8391 df-en 8876 df-fin 8879 df-fsupp 9253 |
| This theorem is referenced by: lcoss 48562 el0ldep 48592 |
| Copyright terms: Public domain | W3C validator |