Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptcfsupp | Structured version Visualization version GIF version |
Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
suppmptcfin.b | ⊢ 𝐵 = (Base‘𝑀) |
suppmptcfin.r | ⊢ 𝑅 = (Scalar‘𝑀) |
suppmptcfin.0 | ⊢ 0 = (0g‘𝑅) |
suppmptcfin.1 | ⊢ 1 = (1r‘𝑅) |
suppmptcfin.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
Ref | Expression |
---|---|
mptcfsupp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppmptcfin.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) | |
2 | 1 | funmpt2 6473 | . . 3 ⊢ Fun 𝐹 |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → Fun 𝐹) |
4 | suppmptcfin.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
5 | suppmptcfin.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑀) | |
6 | suppmptcfin.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
7 | suppmptcfin.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
8 | 4, 5, 6, 7, 1 | suppmptcfin 45715 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) |
9 | mptexg 7097 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ∈ V) | |
10 | 1, 9 | eqeltrid 2843 | . . . 4 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝐹 ∈ V) |
11 | 10 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) |
12 | 6 | fvexi 6788 | . . 3 ⊢ 0 ∈ V |
13 | isfsupp 9132 | . . 3 ⊢ ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) | |
14 | 11, 12, 13 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) |
15 | 3, 8, 14 | mpbir2and 710 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 Basecbs 16912 Scalarcsca 16965 0gc0g 17150 1rcur 19737 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-supp 7978 df-1o 8297 df-en 8734 df-fin 8737 df-fsupp 9129 |
This theorem is referenced by: lcoss 45777 el0ldep 45807 |
Copyright terms: Public domain | W3C validator |