MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczfsuppd Structured version   Visualization version   GIF version

Theorem fczfsuppd 9409
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
fczfsuppd.b (𝜑𝐵𝑉)
fczfsuppd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fczfsuppd (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)

Proof of Theorem fczfsuppd
StepHypRef Expression
1 fczfsuppd.z . . 3 (𝜑𝑍𝑊)
2 fnconstg 6780 . . 3 (𝑍𝑊 → (𝐵 × {𝑍}) Fn 𝐵)
3 fnfun 6649 . . 3 ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍}))
41, 2, 33syl 18 . 2 (𝜑 → Fun (𝐵 × {𝑍}))
5 fczsupp0 8196 . . . 4 ((𝐵 × {𝑍}) supp 𝑍) = ∅
6 0fin 9194 . . . 4 ∅ ∈ Fin
75, 6eqeltri 2821 . . 3 ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin
87a1i 11 . 2 (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)
9 fczfsuppd.b . . . 4 (𝜑𝐵𝑉)
10 snex 5427 . . . 4 {𝑍} ∈ V
11 xpexg 7750 . . . 4 ((𝐵𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V)
129, 10, 11sylancl 584 . . 3 (𝜑 → (𝐵 × {𝑍}) ∈ V)
13 isfsupp 9389 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)))
1412, 1, 13syl2anc 582 . 2 (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)))
154, 8, 14mpbir2and 711 1 (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  Vcvv 3463  c0 4318  {csn 4624   class class class wbr 5143   × cxp 5670  Fun wfun 6537   Fn wfn 6538  (class class class)co 7416   supp csupp 8163  Fincfn 8962   finSupp cfsupp 9385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-supp 8164  df-en 8963  df-fin 8966  df-fsupp 9386
This theorem is referenced by:  cantnf0  9698  cantnf  9716  dprdsubg  19985  tsms0  24064  tgptsmscls  24072  dchrptlem3  27217  elrspunidl  33193  cantnfresb  42818  naddcnffo  42858  naddcnfid1  42861  naddcnfid2  42862
  Copyright terms: Public domain W3C validator