MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczfsuppd Structured version   Visualization version   GIF version

Theorem fczfsuppd 9424
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
fczfsuppd.b (𝜑𝐵𝑉)
fczfsuppd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fczfsuppd (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)

Proof of Theorem fczfsuppd
StepHypRef Expression
1 fczfsuppd.z . . 3 (𝜑𝑍𝑊)
2 fnconstg 6797 . . 3 (𝑍𝑊 → (𝐵 × {𝑍}) Fn 𝐵)
3 fnfun 6669 . . 3 ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍}))
41, 2, 33syl 18 . 2 (𝜑 → Fun (𝐵 × {𝑍}))
5 fczsupp0 8217 . . . 4 ((𝐵 × {𝑍}) supp 𝑍) = ∅
6 0fi 9081 . . . 4 ∅ ∈ Fin
75, 6eqeltri 2835 . . 3 ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin
87a1i 11 . 2 (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)
9 fczfsuppd.b . . . 4 (𝜑𝐵𝑉)
10 snex 5442 . . . 4 {𝑍} ∈ V
11 xpexg 7769 . . . 4 ((𝐵𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V)
129, 10, 11sylancl 586 . . 3 (𝜑 → (𝐵 × {𝑍}) ∈ V)
13 isfsupp 9403 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)))
1412, 1, 13syl2anc 584 . 2 (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)))
154, 8, 14mpbir2and 713 1 (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  Vcvv 3478  c0 4339  {csn 4631   class class class wbr 5148   × cxp 5687  Fun wfun 6557   Fn wfn 6558  (class class class)co 7431   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8185  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  cantnf0  9713  cantnf  9731  dprdsubg  20059  tsms0  24166  tgptsmscls  24174  dchrptlem3  27325  elrgspnlem1  33232  elrspunidl  33436  cantnfresb  43314  naddcnffo  43354  naddcnfid1  43357  naddcnfid2  43358
  Copyright terms: Public domain W3C validator