MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczfsuppd Structured version   Visualization version   GIF version

Theorem fczfsuppd 9426
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
fczfsuppd.b (𝜑𝐵𝑉)
fczfsuppd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fczfsuppd (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)

Proof of Theorem fczfsuppd
StepHypRef Expression
1 fczfsuppd.z . . 3 (𝜑𝑍𝑊)
2 fnconstg 6796 . . 3 (𝑍𝑊 → (𝐵 × {𝑍}) Fn 𝐵)
3 fnfun 6668 . . 3 ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍}))
41, 2, 33syl 18 . 2 (𝜑 → Fun (𝐵 × {𝑍}))
5 fczsupp0 8218 . . . 4 ((𝐵 × {𝑍}) supp 𝑍) = ∅
6 0fi 9082 . . . 4 ∅ ∈ Fin
75, 6eqeltri 2837 . . 3 ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin
87a1i 11 . 2 (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)
9 fczfsuppd.b . . . 4 (𝜑𝐵𝑉)
10 snex 5436 . . . 4 {𝑍} ∈ V
11 xpexg 7770 . . . 4 ((𝐵𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V)
129, 10, 11sylancl 586 . . 3 (𝜑 → (𝐵 × {𝑍}) ∈ V)
13 isfsupp 9405 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)))
1412, 1, 13syl2anc 584 . 2 (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin)))
154, 8, 14mpbir2and 713 1 (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3480  c0 4333  {csn 4626   class class class wbr 5143   × cxp 5683  Fun wfun 6555   Fn wfn 6556  (class class class)co 7431   supp csupp 8185  Fincfn 8985   finSupp cfsupp 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8186  df-en 8986  df-fin 8989  df-fsupp 9402
This theorem is referenced by:  cantnf0  9715  cantnf  9733  dprdsubg  20044  tsms0  24150  tgptsmscls  24158  dchrptlem3  27310  elrgspnlem1  33246  elrspunidl  33456  cantnfresb  43337  naddcnffo  43377  naddcnfid1  43380  naddcnfid2  43381
  Copyright terms: Public domain W3C validator