| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fczfsuppd | Structured version Visualization version GIF version | ||
| Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| fczfsuppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fczfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fczfsuppd | ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fczfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 2 | fnconstg 6751 | . . 3 ⊢ (𝑍 ∈ 𝑊 → (𝐵 × {𝑍}) Fn 𝐵) | |
| 3 | fnfun 6621 | . . 3 ⊢ ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍})) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝐵 × {𝑍})) |
| 5 | fczsupp0 8175 | . . . 4 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | |
| 6 | 0fi 9016 | . . . 4 ⊢ ∅ ∈ Fin | |
| 7 | 5, 6 | eqeltri 2825 | . . 3 ⊢ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin) |
| 9 | fczfsuppd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 10 | snex 5394 | . . . 4 ⊢ {𝑍} ∈ V | |
| 11 | xpexg 7729 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
| 13 | isfsupp 9323 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) | |
| 14 | 12, 1, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) |
| 15 | 4, 8, 14 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 class class class wbr 5110 × cxp 5639 Fun wfun 6508 Fn wfn 6509 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-supp 8143 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: cantnf0 9635 cantnf 9653 dprdsubg 19963 tsms0 24036 tgptsmscls 24044 dchrptlem3 27184 elrgspnlem1 33200 elrspunidl 33406 cantnfresb 43320 naddcnffo 43360 naddcnfid1 43363 naddcnfid2 43364 |
| Copyright terms: Public domain | W3C validator |