![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fczfsuppd | Structured version Visualization version GIF version |
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
fczfsuppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fczfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fczfsuppd | ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fczfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
2 | fnconstg 6773 | . . 3 ⊢ (𝑍 ∈ 𝑊 → (𝐵 × {𝑍}) Fn 𝐵) | |
3 | fnfun 6643 | . . 3 ⊢ ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝐵 × {𝑍})) |
5 | fczsupp0 8178 | . . . 4 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | |
6 | 0fin 9173 | . . . 4 ⊢ ∅ ∈ Fin | |
7 | 5, 6 | eqeltri 2823 | . . 3 ⊢ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin) |
9 | fczfsuppd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
10 | snex 5424 | . . . 4 ⊢ {𝑍} ∈ V | |
11 | xpexg 7734 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
12 | 9, 10, 11 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
13 | isfsupp 9367 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) | |
14 | 12, 1, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) |
15 | 4, 8, 14 | mpbir2and 710 | 1 ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 {csn 4623 class class class wbr 5141 × cxp 5667 Fun wfun 6531 Fn wfn 6532 (class class class)co 7405 supp csupp 8146 Fincfn 8941 finSupp cfsupp 9363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-supp 8147 df-en 8942 df-fin 8945 df-fsupp 9364 |
This theorem is referenced by: cantnf0 9672 cantnf 9690 dprdsubg 19946 tsms0 24001 tgptsmscls 24009 dchrptlem3 27154 elrspunidl 33052 cantnfresb 42650 naddcnffo 42690 naddcnfid1 42693 naddcnfid2 42694 |
Copyright terms: Public domain | W3C validator |