| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fczfsuppd | Structured version Visualization version GIF version | ||
| Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| fczfsuppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fczfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fczfsuppd | ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fczfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 2 | fnconstg 6712 | . . 3 ⊢ (𝑍 ∈ 𝑊 → (𝐵 × {𝑍}) Fn 𝐵) | |
| 3 | fnfun 6582 | . . 3 ⊢ ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍})) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝐵 × {𝑍})) |
| 5 | fczsupp0 8126 | . . . 4 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | |
| 6 | 0fi 8967 | . . . 4 ⊢ ∅ ∈ Fin | |
| 7 | 5, 6 | eqeltri 2824 | . . 3 ⊢ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin) |
| 9 | fczfsuppd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 10 | snex 5375 | . . . 4 ⊢ {𝑍} ∈ V | |
| 11 | xpexg 7686 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
| 13 | isfsupp 9255 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) | |
| 14 | 12, 1, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) |
| 15 | 4, 8, 14 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {csn 4577 class class class wbr 5092 × cxp 5617 Fun wfun 6476 Fn wfn 6477 (class class class)co 7349 supp csupp 8093 Fincfn 8872 finSupp cfsupp 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-supp 8094 df-en 8873 df-fin 8876 df-fsupp 9252 |
| This theorem is referenced by: cantnf0 9571 cantnf 9589 dprdsubg 19905 tsms0 24027 tgptsmscls 24035 dchrptlem3 27175 elrgspnlem1 33182 elrspunidl 33365 extdgfialglem2 33660 cantnfresb 43297 naddcnffo 43337 naddcnfid1 43340 naddcnfid2 43341 |
| Copyright terms: Public domain | W3C validator |