Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fczfsuppd | Structured version Visualization version GIF version |
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
fczfsuppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fczfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fczfsuppd | ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fczfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
2 | fnconstg 6699 | . . 3 ⊢ (𝑍 ∈ 𝑊 → (𝐵 × {𝑍}) Fn 𝐵) | |
3 | fnfun 6571 | . . 3 ⊢ ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝐵 × {𝑍})) |
5 | fczsupp0 8057 | . . . 4 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | |
6 | 0fin 9014 | . . . 4 ⊢ ∅ ∈ Fin | |
7 | 5, 6 | eqeltri 2833 | . . 3 ⊢ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin) |
9 | fczfsuppd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
10 | snex 5368 | . . . 4 ⊢ {𝑍} ∈ V | |
11 | xpexg 7641 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
13 | isfsupp 9208 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) | |
14 | 12, 1, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) |
15 | 4, 8, 14 | mpbir2and 710 | 1 ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 Vcvv 3440 ∅c0 4266 {csn 4570 class class class wbr 5086 × cxp 5605 Fun wfun 6459 Fn wfn 6460 (class class class)co 7316 supp csupp 8025 Fincfn 8782 finSupp cfsupp 9204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-supp 8026 df-en 8783 df-fin 8786 df-fsupp 9205 |
This theorem is referenced by: cantnf0 9510 cantnf 9528 dprdsubg 19699 tsms0 23373 tgptsmscls 23381 dchrptlem3 26494 elrspunidl 31741 naddcnffo 41281 naddcnfid1 41284 naddcnfid2 41285 |
Copyright terms: Public domain | W3C validator |