Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fczfsuppd | Structured version Visualization version GIF version |
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
fczfsuppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fczfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fczfsuppd | ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fczfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
2 | fnconstg 6646 | . . 3 ⊢ (𝑍 ∈ 𝑊 → (𝐵 × {𝑍}) Fn 𝐵) | |
3 | fnfun 6517 | . . 3 ⊢ ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝐵 × {𝑍})) |
5 | fczsupp0 7980 | . . . 4 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | |
6 | 0fin 8916 | . . . 4 ⊢ ∅ ∈ Fin | |
7 | 5, 6 | eqeltri 2835 | . . 3 ⊢ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin) |
9 | fczfsuppd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
10 | snex 5349 | . . . 4 ⊢ {𝑍} ∈ V | |
11 | xpexg 7578 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
12 | 9, 10, 11 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
13 | isfsupp 9062 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) | |
14 | 12, 1, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) |
15 | 4, 8, 14 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 class class class wbr 5070 × cxp 5578 Fun wfun 6412 Fn wfn 6413 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: cantnf0 9363 cantnf 9381 dprdsubg 19542 tsms0 23201 tgptsmscls 23209 dchrptlem3 26319 elrspunidl 31508 |
Copyright terms: Public domain | W3C validator |