| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fczfsuppd | Structured version Visualization version GIF version | ||
| Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| fczfsuppd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fczfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fczfsuppd | ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fczfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 2 | fnconstg 6748 | . . 3 ⊢ (𝑍 ∈ 𝑊 → (𝐵 × {𝑍}) Fn 𝐵) | |
| 3 | fnfun 6618 | . . 3 ⊢ ((𝐵 × {𝑍}) Fn 𝐵 → Fun (𝐵 × {𝑍})) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → Fun (𝐵 × {𝑍})) |
| 5 | fczsupp0 8172 | . . . 4 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | |
| 6 | 0fi 9013 | . . . 4 ⊢ ∅ ∈ Fin | |
| 7 | 5, 6 | eqeltri 2824 | . . 3 ⊢ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin) |
| 9 | fczfsuppd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 10 | snex 5391 | . . . 4 ⊢ {𝑍} ∈ V | |
| 11 | xpexg 7726 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝑍} ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
| 13 | isfsupp 9316 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) | |
| 14 | 12, 1, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑍}) finSupp 𝑍 ↔ (Fun (𝐵 × {𝑍}) ∧ ((𝐵 × {𝑍}) supp 𝑍) ∈ Fin))) |
| 15 | 4, 8, 14 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 class class class wbr 5107 × cxp 5636 Fun wfun 6505 Fn wfn 6506 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-en 8919 df-fin 8922 df-fsupp 9313 |
| This theorem is referenced by: cantnf0 9628 cantnf 9646 dprdsubg 19956 tsms0 24029 tgptsmscls 24037 dchrptlem3 27177 elrgspnlem1 33193 elrspunidl 33399 cantnfresb 43313 naddcnffo 43353 naddcnfid1 43356 naddcnfid2 43357 |
| Copyright terms: Public domain | W3C validator |