Proof of Theorem mndpfsupp
Step | Hyp | Ref
| Expression |
1 | | elmapfn 8227 |
. . . . . 6
⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) → 𝐴 Fn 𝑉) |
2 | 1 | adantr 473 |
. . . . 5
⊢ ((𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) → 𝐴 Fn 𝑉) |
3 | 2 | 3ad2ant2 1115 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐴 Fn 𝑉) |
4 | | elmapfn 8227 |
. . . . . 6
⊢ (𝐵 ∈ (𝑅 ↑𝑚 𝑉) → 𝐵 Fn 𝑉) |
5 | 4 | adantl 474 |
. . . . 5
⊢ ((𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) → 𝐵 Fn 𝑉) |
6 | 5 | 3ad2ant2 1115 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐵 Fn 𝑉) |
7 | | simp1r 1179 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝑉 ∈ 𝑋) |
8 | | inidm 4076 |
. . . 4
⊢ (𝑉 ∩ 𝑉) = 𝑉 |
9 | 3, 6, 7, 7, 8 | offn 7236 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘𝑓
(+g‘𝑀)𝐵) Fn 𝑉) |
10 | | fnfun 6283 |
. . 3
⊢ ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) Fn 𝑉 → Fun (𝐴 ∘𝑓
(+g‘𝑀)𝐵)) |
11 | 9, 10 | syl 17 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → Fun (𝐴 ∘𝑓
(+g‘𝑀)𝐵)) |
12 | | id 22 |
. . . . 5
⊢ (𝐴 finSupp
(0g‘𝑀)
→ 𝐴 finSupp
(0g‘𝑀)) |
13 | 12 | fsuppimpd 8633 |
. . . 4
⊢ (𝐴 finSupp
(0g‘𝑀)
→ (𝐴 supp
(0g‘𝑀))
∈ Fin) |
14 | | id 22 |
. . . . 5
⊢ (𝐵 finSupp
(0g‘𝑀)
→ 𝐵 finSupp
(0g‘𝑀)) |
15 | 14 | fsuppimpd 8633 |
. . . 4
⊢ (𝐵 finSupp
(0g‘𝑀)
→ (𝐵 supp
(0g‘𝑀))
∈ Fin) |
16 | 13, 15 | anim12i 604 |
. . 3
⊢ ((𝐴 finSupp
(0g‘𝑀)
∧ 𝐵 finSupp
(0g‘𝑀))
→ ((𝐴 supp
(0g‘𝑀))
∈ Fin ∧ (𝐵 supp
(0g‘𝑀))
∈ Fin)) |
17 | | mndpsuppfi.r |
. . . 4
⊢ 𝑅 = (Base‘𝑀) |
18 | 17 | mndpsuppfi 43823 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
19 | 16, 18 | syl3an3 1146 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
20 | | ovex 7006 |
. . 3
⊢ (𝐴 ∘𝑓
(+g‘𝑀)𝐵) ∈ V |
21 | | fvexd 6511 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) →
(0g‘𝑀)
∈ V) |
22 | | isfsupp 8630 |
. . 3
⊢ (((𝐴 ∘𝑓
(+g‘𝑀)𝐵) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘𝑓
(+g‘𝑀)𝐵) ∧ ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈
Fin))) |
23 | 20, 21, 22 | sylancr 579 |
. 2
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘𝑓
(+g‘𝑀)𝐵) ∧ ((𝐴 ∘𝑓
(+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈
Fin))) |
24 | 11, 19, 23 | mpbir2and 701 |
1
⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐵 ∈ (𝑅 ↑𝑚 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘𝑓
(+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |