MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpfsupp Structured version   Visualization version   GIF version

Theorem mndpfsupp 18701
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypothesis
Ref Expression
mndpsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpfsupp (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (𝐴f (+g𝑀)𝐵) finSupp (0g𝑀))

Proof of Theorem mndpfsupp
StepHypRef Expression
1 elmapfn 8841 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 Fn 𝑉)
21adantr 480 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐴 Fn 𝑉)
323ad2ant2 1134 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → 𝐴 Fn 𝑉)
4 elmapfn 8841 . . . . 5 (𝐵 ∈ (𝑅m 𝑉) → 𝐵 Fn 𝑉)
54adantl 481 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) → 𝐵 Fn 𝑉)
653ad2ant2 1134 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → 𝐵 Fn 𝑉)
7 simp1r 1199 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → 𝑉𝑋)
83, 6, 7, 7offun 7670 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → Fun (𝐴f (+g𝑀)𝐵))
9 id 22 . . . . 5 (𝐴 finSupp (0g𝑀) → 𝐴 finSupp (0g𝑀))
109fsuppimpd 9327 . . . 4 (𝐴 finSupp (0g𝑀) → (𝐴 supp (0g𝑀)) ∈ Fin)
11 id 22 . . . . 5 (𝐵 finSupp (0g𝑀) → 𝐵 finSupp (0g𝑀))
1211fsuppimpd 9327 . . . 4 (𝐵 finSupp (0g𝑀) → (𝐵 supp (0g𝑀)) ∈ Fin)
1310, 12anim12i 613 . . 3 ((𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀)) → ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin))
14 mndpsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
1514mndpsuppfi 18700 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
1613, 15syl3an3 1165 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
17 ovex 7423 . . 3 (𝐴f (+g𝑀)𝐵) ∈ V
18 fvexd 6876 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (0g𝑀) ∈ V)
19 isfsupp 9323 . . 3 (((𝐴f (+g𝑀)𝐵) ∈ V ∧ (0g𝑀) ∈ V) → ((𝐴f (+g𝑀)𝐵) finSupp (0g𝑀) ↔ (Fun (𝐴f (+g𝑀)𝐵) ∧ ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)))
2017, 18, 19sylancr 587 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → ((𝐴f (+g𝑀)𝐵) finSupp (0g𝑀) ↔ (Fun (𝐴f (+g𝑀)𝐵) ∧ ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)))
218, 16, 20mpbir2and 713 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (𝐴f (+g𝑀)𝐵) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-1o 8437  df-map 8804  df-en 8922  df-fin 8925  df-fsupp 9320  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669
This theorem is referenced by:  elrgspnlem1  33200  lincsumcl  48424
  Copyright terms: Public domain W3C validator