Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndpfsupp | Structured version Visualization version GIF version |
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
mndpsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
mndpfsupp | ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapfn 8611 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴 Fn 𝑉) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴 Fn 𝑉) |
3 | 2 | 3ad2ant2 1132 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐴 Fn 𝑉) |
4 | elmapfn 8611 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵 Fn 𝑉) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵 Fn 𝑉) |
6 | 5 | 3ad2ant2 1132 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐵 Fn 𝑉) |
7 | simp1r 1196 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝑉 ∈ 𝑋) | |
8 | 3, 6, 7, 7 | offun 7525 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → Fun (𝐴 ∘f (+g‘𝑀)𝐵)) |
9 | id 22 | . . . . 5 ⊢ (𝐴 finSupp (0g‘𝑀) → 𝐴 finSupp (0g‘𝑀)) | |
10 | 9 | fsuppimpd 9065 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑀) → (𝐴 supp (0g‘𝑀)) ∈ Fin) |
11 | id 22 | . . . . 5 ⊢ (𝐵 finSupp (0g‘𝑀) → 𝐵 finSupp (0g‘𝑀)) | |
12 | 11 | fsuppimpd 9065 | . . . 4 ⊢ (𝐵 finSupp (0g‘𝑀) → (𝐵 supp (0g‘𝑀)) ∈ Fin) |
13 | 10, 12 | anim12i 612 | . . 3 ⊢ ((𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀)) → ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) |
14 | mndpsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
15 | 14 | mndpsuppfi 45599 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
16 | 13, 15 | syl3an3 1163 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
17 | ovex 7288 | . . 3 ⊢ (𝐴 ∘f (+g‘𝑀)𝐵) ∈ V | |
18 | fvexd 6771 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (0g‘𝑀) ∈ V) | |
19 | isfsupp 9062 | . . 3 ⊢ (((𝐴 ∘f (+g‘𝑀)𝐵) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘f (+g‘𝑀)𝐵) ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin))) | |
20 | 17, 18, 19 | sylancr 586 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘f (+g‘𝑀)𝐵) ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin))) |
21 | 8, 16, 20 | mpbir2and 709 | 1 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 supp csupp 7948 ↑m cmap 8573 Fincfn 8691 finSupp cfsupp 9058 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-1o 8267 df-map 8575 df-en 8692 df-fin 8695 df-fsupp 9059 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: lincsumcl 45660 |
Copyright terms: Public domain | W3C validator |