Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndpfsupp | Structured version Visualization version GIF version |
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
mndpsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
mndpfsupp | ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapfn 8546 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴 Fn 𝑉) | |
2 | 1 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴 Fn 𝑉) |
3 | 2 | 3ad2ant2 1136 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐴 Fn 𝑉) |
4 | elmapfn 8546 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵 Fn 𝑉) | |
5 | 4 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵 Fn 𝑉) |
6 | 5 | 3ad2ant2 1136 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐵 Fn 𝑉) |
7 | simp1r 1200 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝑉 ∈ 𝑋) | |
8 | 3, 6, 7, 7 | offun 7482 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → Fun (𝐴 ∘f (+g‘𝑀)𝐵)) |
9 | id 22 | . . . . 5 ⊢ (𝐴 finSupp (0g‘𝑀) → 𝐴 finSupp (0g‘𝑀)) | |
10 | 9 | fsuppimpd 8992 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑀) → (𝐴 supp (0g‘𝑀)) ∈ Fin) |
11 | id 22 | . . . . 5 ⊢ (𝐵 finSupp (0g‘𝑀) → 𝐵 finSupp (0g‘𝑀)) | |
12 | 11 | fsuppimpd 8992 | . . . 4 ⊢ (𝐵 finSupp (0g‘𝑀) → (𝐵 supp (0g‘𝑀)) ∈ Fin) |
13 | 10, 12 | anim12i 616 | . . 3 ⊢ ((𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀)) → ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) |
14 | mndpsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
15 | 14 | mndpsuppfi 45384 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
16 | 13, 15 | syl3an3 1167 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
17 | ovex 7246 | . . 3 ⊢ (𝐴 ∘f (+g‘𝑀)𝐵) ∈ V | |
18 | fvexd 6732 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (0g‘𝑀) ∈ V) | |
19 | isfsupp 8989 | . . 3 ⊢ (((𝐴 ∘f (+g‘𝑀)𝐵) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘f (+g‘𝑀)𝐵) ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin))) | |
20 | 17, 18, 19 | sylancr 590 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘f (+g‘𝑀)𝐵) ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin))) |
21 | 8, 16, 20 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 Fun wfun 6374 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 ∘f cof 7467 supp csupp 7903 ↑m cmap 8508 Fincfn 8626 finSupp cfsupp 8985 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Mndcmnd 18173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-1o 8202 df-map 8510 df-en 8627 df-fin 8630 df-fsupp 8986 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 |
This theorem is referenced by: lincsumcl 45445 |
Copyright terms: Public domain | W3C validator |