| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndpfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| mndpsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| mndpfsupp | ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapfn 8784 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴 Fn 𝑉) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐴 Fn 𝑉) |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐴 Fn 𝑉) |
| 4 | elmapfn 8784 | . . . . 5 ⊢ (𝐵 ∈ (𝑅 ↑m 𝑉) → 𝐵 Fn 𝑉) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) → 𝐵 Fn 𝑉) |
| 6 | 5 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝐵 Fn 𝑉) |
| 7 | simp1r 1199 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → 𝑉 ∈ 𝑋) | |
| 8 | 3, 6, 7, 7 | offun 7619 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → Fun (𝐴 ∘f (+g‘𝑀)𝐵)) |
| 9 | id 22 | . . . . 5 ⊢ (𝐴 finSupp (0g‘𝑀) → 𝐴 finSupp (0g‘𝑀)) | |
| 10 | 9 | fsuppimpd 9248 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑀) → (𝐴 supp (0g‘𝑀)) ∈ Fin) |
| 11 | id 22 | . . . . 5 ⊢ (𝐵 finSupp (0g‘𝑀) → 𝐵 finSupp (0g‘𝑀)) | |
| 12 | 11 | fsuppimpd 9248 | . . . 4 ⊢ (𝐵 finSupp (0g‘𝑀) → (𝐵 supp (0g‘𝑀)) ∈ Fin) |
| 13 | 10, 12 | anim12i 613 | . . 3 ⊢ ((𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀)) → ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) |
| 14 | mndpsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
| 15 | 14 | mndpsuppfi 18669 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
| 16 | 13, 15 | syl3an3 1165 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) |
| 17 | ovex 7374 | . . 3 ⊢ (𝐴 ∘f (+g‘𝑀)𝐵) ∈ V | |
| 18 | fvexd 6832 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (0g‘𝑀) ∈ V) | |
| 19 | isfsupp 9244 | . . 3 ⊢ (((𝐴 ∘f (+g‘𝑀)𝐵) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘f (+g‘𝑀)𝐵) ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin))) | |
| 20 | 17, 18, 19 | sylancr 587 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → ((𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀) ↔ (Fun (𝐴 ∘f (+g‘𝑀)𝐵) ∧ ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin))) |
| 21 | 8, 16, 20 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 Fun wfun 6470 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Mndcmnd 18637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-1o 8380 df-map 8747 df-en 8865 df-fin 8868 df-fsupp 9241 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 |
| This theorem is referenced by: elrgspnlem1 33201 lincsumcl 48463 |
| Copyright terms: Public domain | W3C validator |