![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | 1 | ffund 6741 | . 2 ⊢ (𝜑 → Fun 𝐹) |
3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | 1, 3, 4 | fdmfisuppfi 9412 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
6 | 1 | ffnd 6738 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
7 | fnex 7237 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
9 | isfsupp 9403 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 Fun wfun 6557 Fn wfn 6558 ⟶wf 6559 (class class class)co 7431 supp csupp 8184 Fincfn 8984 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-supp 8185 df-1o 8505 df-en 8985 df-fin 8988 df-fsupp 9400 |
This theorem is referenced by: fsuppmptdm 9414 fndmfifsupp 9416 gsumreidx 19950 gsummptfif1o 20001 frlmfibas 21800 elfilspd 21841 rhmpsrlem1 21978 tmdgsum 24119 tsmslem1 24153 tsmssubm 24167 tsmsres 24168 tsmsf1o 24169 tsmsmhm 24170 tsmsadd 24171 tsmsxplem1 24177 tsmsxplem2 24178 imasdsf1olem 24399 xrge0gsumle 24869 xrge0tsms 24870 rrxbasefi 25458 ehlbase 25463 jensenlem2 27046 jensen 27047 amgmlem 27048 amgm 27049 wilthlem2 27127 wilthlem3 27128 wrdfsupp 32906 xrge0tsmsd 33048 gsumle 33084 linds2eq 33389 elrspunidl 33436 rprmdvdsprod 33542 esumpfinvalf 34057 k0004ss2 44142 sge0tsms 46336 fsuppmptdmf 48223 linccl 48260 lcosn0 48266 islinindfis 48295 snlindsntor 48317 ldepspr 48319 zlmodzxzldeplem2 48347 amgmwlem 49033 amgmlemALT 49034 |
Copyright terms: Public domain | W3C validator |