Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | 1 | ffund 6588 | . 2 ⊢ (𝜑 → Fun 𝐹) |
3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | 1, 3, 4 | fdmfisuppfi 9067 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
6 | 1 | ffnd 6585 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
7 | fnex 7075 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
8 | 6, 3, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
9 | isfsupp 9062 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
10 | 8, 4, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
11 | 2, 5, 10 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: fsuppmptdm 9069 fndmfifsupp 9071 gsumreidx 19433 gsummptfif1o 19484 frlmfibas 20879 elfilspd 20920 psrmulcllem 21066 tmdgsum 23154 tsmslem1 23188 tsmssubm 23202 tsmsres 23203 tsmsf1o 23204 tsmsmhm 23205 tsmsadd 23206 tsmsxplem1 23212 tsmsxplem2 23213 imasdsf1olem 23434 xrge0gsumle 23902 xrge0tsms 23903 rrxbasefi 24479 ehlbase 24484 jensenlem2 26042 jensen 26043 amgmlem 26044 amgm 26045 wilthlem2 26123 wilthlem3 26124 xrge0tsmsd 31219 gsumle 31252 linds2eq 31477 elrspunidl 31508 esumpfinvalf 31944 k0004ss2 41651 sge0tsms 43808 fsuppmptdmf 45605 linccl 45643 lcosn0 45649 islinindfis 45678 snlindsntor 45700 ldepspr 45702 zlmodzxzldeplem2 45730 amgmwlem 46392 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |