![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | 1 | ffund 6353 | . 2 ⊢ (𝜑 → Fun 𝐹) |
3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | 1, 3, 4 | fdmfisuppfi 8643 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
6 | 1 | ffnd 6350 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
7 | fnex 6812 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
8 | 6, 3, 7 | syl2anc 576 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
9 | isfsupp 8638 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
10 | 8, 4, 9 | syl2anc 576 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
11 | 2, 5, 10 | mpbir2and 701 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2051 Vcvv 3417 class class class wbr 4934 Fun wfun 6187 Fn wfn 6188 ⟶wf 6189 (class class class)co 6982 supp csupp 7639 Fincfn 8312 finSupp cfsupp 8634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-supp 7640 df-er 8095 df-en 8313 df-fin 8316 df-fsupp 8635 |
This theorem is referenced by: fsuppmptdm 8645 fndmfifsupp 8647 gsummptfif1o 18853 psrmulcllem 19893 frlmfibas 20623 elfilspd 20664 tmdgsum 22422 tsmslem1 22455 tsmssubm 22469 tsmsres 22470 tsmsf1o 22471 tsmsmhm 22472 tsmsadd 22473 tsmsxplem1 22479 tsmsxplem2 22480 imasdsf1olem 22701 xrge0gsumle 23159 xrge0tsms 23160 rrxbasefi 23731 ehlbase 23736 jensenlem2 25282 jensen 25283 amgmlem 25284 amgm 25285 wilthlem2 25363 wilthlem3 25364 gsumle 30554 xrge0tsmsd 30562 linds2eq 30644 esumpfinvalf 31011 k0004ss2 39906 sge0tsms 42128 fsuppmptdmf 43830 linccl 43871 lcosn0 43877 islinindfis 43906 snlindsntor 43928 ldepspr 43930 zlmodzxzldeplem2 43958 amgmwlem 44305 amgmlemALT 44306 |
Copyright terms: Public domain | W3C validator |