Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | 1 | ffund 6549 | . 2 ⊢ (𝜑 → Fun 𝐹) |
3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | 1, 3, 4 | fdmfisuppfi 8994 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
6 | 1 | ffnd 6546 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
7 | fnex 7033 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
8 | 6, 3, 7 | syl2anc 587 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
9 | isfsupp 8989 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
10 | 8, 4, 9 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 Fun wfun 6374 Fn wfn 6375 ⟶wf 6376 (class class class)co 7213 supp csupp 7903 Fincfn 8626 finSupp cfsupp 8985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-supp 7904 df-1o 8202 df-en 8627 df-fin 8630 df-fsupp 8986 |
This theorem is referenced by: fsuppmptdm 8996 fndmfifsupp 8998 gsumreidx 19302 gsummptfif1o 19353 frlmfibas 20724 elfilspd 20765 psrmulcllem 20912 tmdgsum 22992 tsmslem1 23026 tsmssubm 23040 tsmsres 23041 tsmsf1o 23042 tsmsmhm 23043 tsmsadd 23044 tsmsxplem1 23050 tsmsxplem2 23051 imasdsf1olem 23271 xrge0gsumle 23730 xrge0tsms 23731 rrxbasefi 24307 ehlbase 24312 jensenlem2 25870 jensen 25871 amgmlem 25872 amgm 25873 wilthlem2 25951 wilthlem3 25952 xrge0tsmsd 31036 gsumle 31069 linds2eq 31289 elrspunidl 31320 esumpfinvalf 31756 k0004ss2 41439 sge0tsms 43593 fsuppmptdmf 45390 linccl 45428 lcosn0 45434 islinindfis 45463 snlindsntor 45485 ldepspr 45487 zlmodzxzldeplem2 45515 amgmwlem 46177 amgmlemALT 46178 |
Copyright terms: Public domain | W3C validator |