| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version | ||
| Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
| Ref | Expression |
|---|---|
| fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
| fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
| fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
| 2 | 1 | ffund 6655 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
| 4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 5 | 1, 3, 4 | fdmfisuppfi 9258 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 6 | 1 | ffnd 6652 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 7 | fnex 7151 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
| 8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | isfsupp 9249 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
| 10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
| 11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 (class class class)co 7346 supp csupp 8090 Fincfn 8869 finSupp cfsupp 9245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-supp 8091 df-1o 8385 df-en 8870 df-fin 8873 df-fsupp 9246 |
| This theorem is referenced by: fsuppmptdm 9260 fndmfifsupp 9262 gsumreidx 19827 gsummptfif1o 19878 gsumle 20055 frlmfibas 21697 elfilspd 21738 rhmpsrlem1 21875 tmdgsum 24008 tsmslem1 24042 tsmssubm 24056 tsmsres 24057 tsmsf1o 24058 tsmsmhm 24059 tsmsadd 24060 tsmsxplem1 24066 tsmsxplem2 24067 imasdsf1olem 24286 xrge0gsumle 24747 xrge0tsms 24748 rrxbasefi 25335 ehlbase 25340 jensenlem2 26923 jensen 26924 amgmlem 26925 amgm 26926 wilthlem2 27004 wilthlem3 27005 wrdfsupp 32913 xrge0tsmsd 33037 linds2eq 33341 elrspunidl 33388 rprmdvdsprod 33494 esumpfinvalf 34084 k0004ss2 44184 sge0tsms 46417 fsuppmptdmf 48408 linccl 48445 lcosn0 48451 islinindfis 48480 snlindsntor 48502 ldepspr 48504 zlmodzxzldeplem2 48532 amgmwlem 49833 amgmlemALT 49834 |
| Copyright terms: Public domain | W3C validator |