| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version | ||
| Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
| Ref | Expression |
|---|---|
| fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
| fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
| fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
| 2 | 1 | ffund 6715 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
| 4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 5 | 1, 3, 4 | fdmfisuppfi 9391 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 6 | 1 | ffnd 6712 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 7 | fnex 7214 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
| 8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | isfsupp 9382 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
| 10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
| 11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 Fun wfun 6530 Fn wfn 6531 ⟶wf 6532 (class class class)co 7410 supp csupp 8164 Fincfn 8964 finSupp cfsupp 9378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-supp 8165 df-1o 8485 df-en 8965 df-fin 8968 df-fsupp 9379 |
| This theorem is referenced by: fsuppmptdm 9393 fndmfifsupp 9395 gsumreidx 19903 gsummptfif1o 19954 frlmfibas 21727 elfilspd 21768 rhmpsrlem1 21905 tmdgsum 24038 tsmslem1 24072 tsmssubm 24086 tsmsres 24087 tsmsf1o 24088 tsmsmhm 24089 tsmsadd 24090 tsmsxplem1 24096 tsmsxplem2 24097 imasdsf1olem 24317 xrge0gsumle 24778 xrge0tsms 24779 rrxbasefi 25367 ehlbase 25372 jensenlem2 26955 jensen 26956 amgmlem 26957 amgm 26958 wilthlem2 27036 wilthlem3 27037 wrdfsupp 32917 xrge0tsmsd 33061 gsumle 33097 linds2eq 33401 elrspunidl 33448 rprmdvdsprod 33554 esumpfinvalf 34112 k0004ss2 44143 sge0tsms 46376 fsuppmptdmf 48320 linccl 48357 lcosn0 48363 islinindfis 48392 snlindsntor 48414 ldepspr 48416 zlmodzxzldeplem2 48444 amgmwlem 49633 amgmlemALT 49634 |
| Copyright terms: Public domain | W3C validator |