| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version | ||
| Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
| Ref | Expression |
|---|---|
| fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
| fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
| fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
| 2 | 1 | ffund 6660 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
| 4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 5 | 1, 3, 4 | fdmfisuppfi 9265 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 6 | 1 | ffnd 6657 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 7 | fnex 7157 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
| 8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | isfsupp 9256 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
| 10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
| 11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 (class class class)co 7352 supp csupp 8096 Fincfn 8875 finSupp cfsupp 9252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-supp 8097 df-1o 8391 df-en 8876 df-fin 8879 df-fsupp 9253 |
| This theorem is referenced by: fsuppmptdm 9267 fndmfifsupp 9269 gsumreidx 19831 gsummptfif1o 19882 gsumle 20059 frlmfibas 21701 elfilspd 21742 rhmpsrlem1 21879 tmdgsum 24011 tsmslem1 24045 tsmssubm 24059 tsmsres 24060 tsmsf1o 24061 tsmsmhm 24062 tsmsadd 24063 tsmsxplem1 24069 tsmsxplem2 24070 imasdsf1olem 24289 xrge0gsumle 24750 xrge0tsms 24751 rrxbasefi 25338 ehlbase 25343 jensenlem2 26926 jensen 26927 amgmlem 26928 amgm 26929 wilthlem2 27007 wilthlem3 27008 wrdfsupp 32925 xrge0tsmsd 33049 linds2eq 33353 elrspunidl 33400 rprmdvdsprod 33506 esumpfinvalf 34110 k0004ss2 44270 sge0tsms 46503 fsuppmptdmf 48503 linccl 48540 lcosn0 48546 islinindfis 48575 snlindsntor 48597 ldepspr 48599 zlmodzxzldeplem2 48627 amgmwlem 49928 amgmlemALT 49929 |
| Copyright terms: Public domain | W3C validator |