| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version | ||
| Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
| Ref | Expression |
|---|---|
| fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
| fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
| fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
| 2 | 1 | ffund 6695 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
| 4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 5 | 1, 3, 4 | fdmfisuppfi 9332 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 6 | 1 | ffnd 6692 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 7 | fnex 7194 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
| 8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | isfsupp 9323 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
| 10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
| 11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-supp 8143 df-1o 8437 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: fsuppmptdm 9334 fndmfifsupp 9336 gsumreidx 19854 gsummptfif1o 19905 frlmfibas 21678 elfilspd 21719 rhmpsrlem1 21856 tmdgsum 23989 tsmslem1 24023 tsmssubm 24037 tsmsres 24038 tsmsf1o 24039 tsmsmhm 24040 tsmsadd 24041 tsmsxplem1 24047 tsmsxplem2 24048 imasdsf1olem 24268 xrge0gsumle 24729 xrge0tsms 24730 rrxbasefi 25317 ehlbase 25322 jensenlem2 26905 jensen 26906 amgmlem 26907 amgm 26908 wilthlem2 26986 wilthlem3 26987 wrdfsupp 32865 xrge0tsmsd 33009 gsumle 33045 linds2eq 33359 elrspunidl 33406 rprmdvdsprod 33512 esumpfinvalf 34073 k0004ss2 44148 sge0tsms 46385 fsuppmptdmf 48370 linccl 48407 lcosn0 48413 islinindfis 48442 snlindsntor 48464 ldepspr 48466 zlmodzxzldeplem2 48494 amgmwlem 49795 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |