MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmfifsupp Structured version   Visualization version   GIF version

Theorem fdmfifsupp 9333
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.)
Hypotheses
Ref Expression
fdmfisuppfi.f (𝜑𝐹:𝐷𝑅)
fdmfisuppfi.d (𝜑𝐷 ∈ Fin)
fdmfisuppfi.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fdmfifsupp (𝜑𝐹 finSupp 𝑍)

Proof of Theorem fdmfifsupp
StepHypRef Expression
1 fdmfisuppfi.f . . 3 (𝜑𝐹:𝐷𝑅)
21ffund 6695 . 2 (𝜑 → Fun 𝐹)
3 fdmfisuppfi.d . . 3 (𝜑𝐷 ∈ Fin)
4 fdmfisuppfi.z . . 3 (𝜑𝑍𝑉)
51, 3, 4fdmfisuppfi 9332 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
61ffnd 6692 . . . 4 (𝜑𝐹 Fn 𝐷)
7 fnex 7194 . . . 4 ((𝐹 Fn 𝐷𝐷 ∈ Fin) → 𝐹 ∈ V)
86, 3, 7syl2anc 584 . . 3 (𝜑𝐹 ∈ V)
9 isfsupp 9323 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)))
108, 4, 9syl2anc 584 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)))
112, 5, 10mpbir2and 713 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3450   class class class wbr 5110  Fun wfun 6508   Fn wfn 6509  wf 6510  (class class class)co 7390   supp csupp 8142  Fincfn 8921   finSupp cfsupp 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-supp 8143  df-1o 8437  df-en 8922  df-fin 8925  df-fsupp 9320
This theorem is referenced by:  fsuppmptdm  9334  fndmfifsupp  9336  gsumreidx  19854  gsummptfif1o  19905  frlmfibas  21678  elfilspd  21719  rhmpsrlem1  21856  tmdgsum  23989  tsmslem1  24023  tsmssubm  24037  tsmsres  24038  tsmsf1o  24039  tsmsmhm  24040  tsmsadd  24041  tsmsxplem1  24047  tsmsxplem2  24048  imasdsf1olem  24268  xrge0gsumle  24729  xrge0tsms  24730  rrxbasefi  25317  ehlbase  25322  jensenlem2  26905  jensen  26906  amgmlem  26907  amgm  26908  wilthlem2  26986  wilthlem3  26987  wrdfsupp  32865  xrge0tsmsd  33009  gsumle  33045  linds2eq  33359  elrspunidl  33406  rprmdvdsprod  33512  esumpfinvalf  34073  k0004ss2  44148  sge0tsms  46385  fsuppmptdmf  48370  linccl  48407  lcosn0  48413  islinindfis  48442  snlindsntor  48464  ldepspr  48466  zlmodzxzldeplem2  48494  amgmwlem  49795  amgmlemALT  49796
  Copyright terms: Public domain W3C validator