| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version | ||
| Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
| Ref | Expression |
|---|---|
| fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
| fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
| fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
| 2 | 1 | ffund 6660 | . 2 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
| 4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 5 | 1, 3, 4 | fdmfisuppfi 9283 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 6 | 1 | ffnd 6657 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 7 | fnex 7157 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
| 8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | isfsupp 9274 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
| 10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
| 11 | 2, 5, 10 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 (class class class)co 7353 supp csupp 8100 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: fsuppmptdm 9285 fndmfifsupp 9287 gsumreidx 19814 gsummptfif1o 19865 gsumle 20042 frlmfibas 21687 elfilspd 21728 rhmpsrlem1 21865 tmdgsum 23998 tsmslem1 24032 tsmssubm 24046 tsmsres 24047 tsmsf1o 24048 tsmsmhm 24049 tsmsadd 24050 tsmsxplem1 24056 tsmsxplem2 24057 imasdsf1olem 24277 xrge0gsumle 24738 xrge0tsms 24739 rrxbasefi 25326 ehlbase 25331 jensenlem2 26914 jensen 26915 amgmlem 26916 amgm 26917 wilthlem2 26995 wilthlem3 26996 wrdfsupp 32891 xrge0tsmsd 33028 linds2eq 33328 elrspunidl 33375 rprmdvdsprod 33481 esumpfinvalf 34042 k0004ss2 44125 sge0tsms 46362 fsuppmptdmf 48363 linccl 48400 lcosn0 48406 islinindfis 48435 snlindsntor 48457 ldepspr 48459 zlmodzxzldeplem2 48487 amgmwlem 49788 amgmlemALT 49789 |
| Copyright terms: Public domain | W3C validator |