Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fdmfifsupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fdmfisuppfi.f | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fdmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fdmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fdmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | 1 | ffund 6604 | . 2 ⊢ (𝜑 → Fun 𝐹) |
3 | fdmfisuppfi.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
4 | fdmfisuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | 1, 3, 4 | fdmfisuppfi 9137 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
6 | 1 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) |
7 | fnex 7093 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
9 | isfsupp 9132 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) | |
10 | 8, 4, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))) |
11 | 2, 5, 10 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-supp 7978 df-1o 8297 df-en 8734 df-fin 8737 df-fsupp 9129 |
This theorem is referenced by: fsuppmptdm 9139 fndmfifsupp 9141 gsumreidx 19518 gsummptfif1o 19569 frlmfibas 20969 elfilspd 21010 psrmulcllem 21156 tmdgsum 23246 tsmslem1 23280 tsmssubm 23294 tsmsres 23295 tsmsf1o 23296 tsmsmhm 23297 tsmsadd 23298 tsmsxplem1 23304 tsmsxplem2 23305 imasdsf1olem 23526 xrge0gsumle 23996 xrge0tsms 23997 rrxbasefi 24574 ehlbase 24579 jensenlem2 26137 jensen 26138 amgmlem 26139 amgm 26140 wilthlem2 26218 wilthlem3 26219 xrge0tsmsd 31317 gsumle 31350 linds2eq 31575 elrspunidl 31606 esumpfinvalf 32044 k0004ss2 41762 sge0tsms 43918 fsuppmptdmf 45717 linccl 45755 lcosn0 45761 islinindfis 45790 snlindsntor 45812 ldepspr 45814 zlmodzxzldeplem2 45842 amgmwlem 46506 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |