MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Structured version   Visualization version   GIF version

Theorem gsumpt 19930
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumpt.b 𝐵 = (Base‘𝐺)
gsumpt.z 0 = (0g𝐺)
gsumpt.g (𝜑𝐺 ∈ Mnd)
gsumpt.a (𝜑𝐴𝑉)
gsumpt.x (𝜑𝑋𝐴)
gsumpt.f (𝜑𝐹:𝐴𝐵)
gsumpt.s (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
Assertion
Ref Expression
gsumpt (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))

Proof of Theorem gsumpt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4 (𝜑𝐹:𝐴𝐵)
2 gsumpt.x . . . . 5 (𝜑𝑋𝐴)
32snssd 4783 . . . 4 (𝜑 → {𝑋} ⊆ 𝐴)
41, 3feqresmpt 6945 . . 3 (𝜑 → (𝐹 ↾ {𝑋}) = (𝑎 ∈ {𝑋} ↦ (𝐹𝑎)))
54oveq2d 7416 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))))
6 gsumpt.b . . 3 𝐵 = (Base‘𝐺)
7 gsumpt.z . . 3 0 = (0g𝐺)
8 eqid 2734 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
9 gsumpt.g . . 3 (𝜑𝐺 ∈ Mnd)
10 gsumpt.a . . 3 (𝜑𝐴𝑉)
111, 2ffvelcdmd 7072 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ 𝐵)
12 eqidd 2735 . . . . . . . 8 (𝜑 → ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))
13 eqid 2734 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
146, 13, 8elcntzsn 19295 . . . . . . . . 9 ((𝐹𝑋) ∈ 𝐵 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1511, 14syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1611, 12, 15mpbir2and 713 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
1716snssd 4783 . . . . . 6 (𝜑 → {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
18 eqid 2734 . . . . . . 7 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
19 eqid 2734 . . . . . . 7 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
208, 18, 19cntzspan 19812 . . . . . 6 ((𝐺 ∈ Mnd ∧ {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)})) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
219, 17, 20syl2anc 584 . . . . 5 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
226submacs 18792 . . . . . . . 8 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
23 acsmre 17651 . . . . . . . 8 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
249, 22, 233syl 18 . . . . . . 7 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
2511snssd 4783 . . . . . . 7 (𝜑 → {(𝐹𝑋)} ⊆ 𝐵)
2618mrccl 17610 . . . . . . 7 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ {(𝐹𝑋)} ⊆ 𝐵) → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2724, 25, 26syl2anc 584 . . . . . 6 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2819, 8submcmn2 19807 . . . . . 6 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
2927, 28syl 17 . . . . 5 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
3021, 29mpbid 232 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
311ffnd 6704 . . . . . 6 (𝜑𝐹 Fn 𝐴)
32 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → 𝑎 = 𝑋)
3332fveq2d 6877 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) = (𝐹𝑋))
3424, 18, 25mrcssidd 17624 . . . . . . . . . . 11 (𝜑 → {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
35 fvex 6886 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
3635snss 4759 . . . . . . . . . . 11 ((𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3734, 36sylibr 234 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3933, 38eqeltrd 2833 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
40 eldifsn 4760 . . . . . . . . . . 11 (𝑎 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑎𝐴𝑎𝑋))
41 gsumpt.s . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
427fvexi 6887 . . . . . . . . . . . . 13 0 ∈ V
4342a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
441, 41, 10, 43suppssr 8189 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝐴 ∖ {𝑋})) → (𝐹𝑎) = 0 )
4540, 44sylan2br 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) = 0 )
467subm0cl 18776 . . . . . . . . . . . 12 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4727, 46syl 17 . . . . . . . . . . 11 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4945, 48eqeltrd 2833 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5049anassrs 467 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5139, 50pm2.61dane 3018 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5251ralrimiva 3130 . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
53 ffnfv 7106 . . . . . 6 (𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
5431, 52, 53sylanbrc 583 . . . . 5 (𝜑𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5554frnd 6711 . . . 4 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
568cntzidss 19310 . . . 4 ((((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∧ ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
5730, 55, 56syl2anc 584 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
581ffund 6707 . . . 4 (𝜑 → Fun 𝐹)
59 snfi 9052 . . . . 5 {𝑋} ∈ Fin
60 ssfi 9182 . . . . 5 (({𝑋} ∈ Fin ∧ (𝐹 supp 0 ) ⊆ {𝑋}) → (𝐹 supp 0 ) ∈ Fin)
6159, 41, 60sylancr 587 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
621, 10fexd 7216 . . . . 5 (𝜑𝐹 ∈ V)
63 isfsupp 9372 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6462, 43, 63syl2anc 584 . . . 4 (𝜑 → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6558, 61, 64mpbir2and 713 . . 3 (𝜑𝐹 finSupp 0 )
666, 7, 8, 9, 10, 1, 57, 41, 65gsumzres 19877 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg 𝐹))
67 fveq2 6873 . . . 4 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
686, 67gsumsn 19922 . . 3 ((𝐺 ∈ Mnd ∧ 𝑋𝐴 ∧ (𝐹𝑋) ∈ 𝐵) → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
699, 2, 11, 68syl3anc 1372 . 2 (𝜑 → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
705, 66, 693eqtr3d 2777 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  Vcvv 3457  cdif 3921  wss 3924  {csn 4599   class class class wbr 5117  cmpt 5199  ran crn 5653  cres 5654  Fun wfun 6522   Fn wfn 6523  wf 6524  cfv 6528  (class class class)co 7400   supp csupp 8154  Fincfn 8954   finSupp cfsupp 9368  Basecbs 17215  s cress 17238  +gcplusg 17258  0gc0g 17440   Σg cgsu 17441  Moorecmre 17581  mrClscmrc 17582  ACScacs 17584  Mndcmnd 18699  SubMndcsubmnd 18747  Cntzccntz 19285  CMndccmn 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-n0 12495  df-z 12582  df-uz 12846  df-fz 13515  df-fzo 13662  df-seq 14010  df-hash 14339  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-0g 17442  df-gsum 17443  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-mulg 19038  df-cntz 19287  df-cmn 19750
This theorem is referenced by:  gsummpt1n0  19933  dprdfid  19987  uvcresum  21740  frlmup2  21746  evlslem3  22025  evlslem1  22027  coe1tmmul2  22200  coe1tmmul  22201  mamulid  22366  mamurid  22367  coe1mul3  26043  tayl0  26308  jensen  26937  linc1  48295
  Copyright terms: Public domain W3C validator