MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Structured version   Visualization version   GIF version

Theorem gsumpt 19892
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumpt.b 𝐵 = (Base‘𝐺)
gsumpt.z 0 = (0g𝐺)
gsumpt.g (𝜑𝐺 ∈ Mnd)
gsumpt.a (𝜑𝐴𝑉)
gsumpt.x (𝜑𝑋𝐴)
gsumpt.f (𝜑𝐹:𝐴𝐵)
gsumpt.s (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
Assertion
Ref Expression
gsumpt (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))

Proof of Theorem gsumpt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4 (𝜑𝐹:𝐴𝐵)
2 gsumpt.x . . . . 5 (𝜑𝑋𝐴)
32snssd 4773 . . . 4 (𝜑 → {𝑋} ⊆ 𝐴)
41, 3feqresmpt 6930 . . 3 (𝜑 → (𝐹 ↾ {𝑋}) = (𝑎 ∈ {𝑋} ↦ (𝐹𝑎)))
54oveq2d 7403 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))))
6 gsumpt.b . . 3 𝐵 = (Base‘𝐺)
7 gsumpt.z . . 3 0 = (0g𝐺)
8 eqid 2729 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
9 gsumpt.g . . 3 (𝜑𝐺 ∈ Mnd)
10 gsumpt.a . . 3 (𝜑𝐴𝑉)
111, 2ffvelcdmd 7057 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ 𝐵)
12 eqidd 2730 . . . . . . . 8 (𝜑 → ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))
13 eqid 2729 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
146, 13, 8elcntzsn 19257 . . . . . . . . 9 ((𝐹𝑋) ∈ 𝐵 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1511, 14syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1611, 12, 15mpbir2and 713 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
1716snssd 4773 . . . . . 6 (𝜑 → {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
18 eqid 2729 . . . . . . 7 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
19 eqid 2729 . . . . . . 7 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
208, 18, 19cntzspan 19774 . . . . . 6 ((𝐺 ∈ Mnd ∧ {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)})) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
219, 17, 20syl2anc 584 . . . . 5 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
226submacs 18754 . . . . . . . 8 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
23 acsmre 17613 . . . . . . . 8 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
249, 22, 233syl 18 . . . . . . 7 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
2511snssd 4773 . . . . . . 7 (𝜑 → {(𝐹𝑋)} ⊆ 𝐵)
2618mrccl 17572 . . . . . . 7 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ {(𝐹𝑋)} ⊆ 𝐵) → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2724, 25, 26syl2anc 584 . . . . . 6 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2819, 8submcmn2 19769 . . . . . 6 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
2927, 28syl 17 . . . . 5 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
3021, 29mpbid 232 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
311ffnd 6689 . . . . . 6 (𝜑𝐹 Fn 𝐴)
32 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → 𝑎 = 𝑋)
3332fveq2d 6862 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) = (𝐹𝑋))
3424, 18, 25mrcssidd 17586 . . . . . . . . . . 11 (𝜑 → {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
35 fvex 6871 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
3635snss 4749 . . . . . . . . . . 11 ((𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3734, 36sylibr 234 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3933, 38eqeltrd 2828 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
40 eldifsn 4750 . . . . . . . . . . 11 (𝑎 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑎𝐴𝑎𝑋))
41 gsumpt.s . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
427fvexi 6872 . . . . . . . . . . . . 13 0 ∈ V
4342a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
441, 41, 10, 43suppssr 8174 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝐴 ∖ {𝑋})) → (𝐹𝑎) = 0 )
4540, 44sylan2br 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) = 0 )
467subm0cl 18738 . . . . . . . . . . . 12 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4727, 46syl 17 . . . . . . . . . . 11 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4945, 48eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5049anassrs 467 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5139, 50pm2.61dane 3012 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5251ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
53 ffnfv 7091 . . . . . 6 (𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
5431, 52, 53sylanbrc 583 . . . . 5 (𝜑𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5554frnd 6696 . . . 4 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
568cntzidss 19272 . . . 4 ((((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∧ ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
5730, 55, 56syl2anc 584 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
581ffund 6692 . . . 4 (𝜑 → Fun 𝐹)
59 snfi 9014 . . . . 5 {𝑋} ∈ Fin
60 ssfi 9137 . . . . 5 (({𝑋} ∈ Fin ∧ (𝐹 supp 0 ) ⊆ {𝑋}) → (𝐹 supp 0 ) ∈ Fin)
6159, 41, 60sylancr 587 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
621, 10fexd 7201 . . . . 5 (𝜑𝐹 ∈ V)
63 isfsupp 9316 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6462, 43, 63syl2anc 584 . . . 4 (𝜑 → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6558, 61, 64mpbir2and 713 . . 3 (𝜑𝐹 finSupp 0 )
666, 7, 8, 9, 10, 1, 57, 41, 65gsumzres 19839 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg 𝐹))
67 fveq2 6858 . . . 4 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
686, 67gsumsn 19884 . . 3 ((𝐺 ∈ Mnd ∧ 𝑋𝐴 ∧ (𝐹𝑋) ∈ 𝐵) → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
699, 2, 11, 68syl3anc 1373 . 2 (𝜑 → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
705, 66, 693eqtr3d 2772 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188  ran crn 5639  cres 5640  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Moorecmre 17543  mrClscmrc 17544  ACScacs 17546  Mndcmnd 18661  SubMndcsubmnd 18709  Cntzccntz 19247  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  gsummpt1n0  19895  dprdfid  19949  uvcresum  21702  frlmup2  21708  evlslem3  21987  evlslem1  21989  coe1tmmul2  22162  coe1tmmul  22163  mamulid  22328  mamurid  22329  coe1mul3  26004  tayl0  26269  jensen  26899  linc1  48414
  Copyright terms: Public domain W3C validator