MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Structured version   Visualization version   GIF version

Theorem gsumpt 19075
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumpt.b 𝐵 = (Base‘𝐺)
gsumpt.z 0 = (0g𝐺)
gsumpt.g (𝜑𝐺 ∈ Mnd)
gsumpt.a (𝜑𝐴𝑉)
gsumpt.x (𝜑𝑋𝐴)
gsumpt.f (𝜑𝐹:𝐴𝐵)
gsumpt.s (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
Assertion
Ref Expression
gsumpt (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))

Proof of Theorem gsumpt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4 (𝜑𝐹:𝐴𝐵)
2 gsumpt.x . . . . 5 (𝜑𝑋𝐴)
32snssd 4702 . . . 4 (𝜑 → {𝑋} ⊆ 𝐴)
41, 3feqresmpt 6709 . . 3 (𝜑 → (𝐹 ↾ {𝑋}) = (𝑎 ∈ {𝑋} ↦ (𝐹𝑎)))
54oveq2d 7151 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))))
6 gsumpt.b . . 3 𝐵 = (Base‘𝐺)
7 gsumpt.z . . 3 0 = (0g𝐺)
8 eqid 2798 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
9 gsumpt.g . . 3 (𝜑𝐺 ∈ Mnd)
10 gsumpt.a . . 3 (𝜑𝐴𝑉)
111, 2ffvelrnd 6829 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ 𝐵)
12 eqidd 2799 . . . . . . . 8 (𝜑 → ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))
13 eqid 2798 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
146, 13, 8elcntzsn 18447 . . . . . . . . 9 ((𝐹𝑋) ∈ 𝐵 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1511, 14syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1611, 12, 15mpbir2and 712 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
1716snssd 4702 . . . . . 6 (𝜑 → {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
18 eqid 2798 . . . . . . 7 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
19 eqid 2798 . . . . . . 7 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
208, 18, 19cntzspan 18957 . . . . . 6 ((𝐺 ∈ Mnd ∧ {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)})) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
219, 17, 20syl2anc 587 . . . . 5 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
226submacs 17983 . . . . . . . 8 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
23 acsmre 16915 . . . . . . . 8 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
249, 22, 233syl 18 . . . . . . 7 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
2511snssd 4702 . . . . . . 7 (𝜑 → {(𝐹𝑋)} ⊆ 𝐵)
2618mrccl 16874 . . . . . . 7 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ {(𝐹𝑋)} ⊆ 𝐵) → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2724, 25, 26syl2anc 587 . . . . . 6 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2819, 8submcmn2 18952 . . . . . 6 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
2927, 28syl 17 . . . . 5 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
3021, 29mpbid 235 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
311ffnd 6488 . . . . . 6 (𝜑𝐹 Fn 𝐴)
32 simpr 488 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → 𝑎 = 𝑋)
3332fveq2d 6649 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) = (𝐹𝑋))
3424, 18, 25mrcssidd 16888 . . . . . . . . . . 11 (𝜑 → {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
35 fvex 6658 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
3635snss 4679 . . . . . . . . . . 11 ((𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3734, 36sylibr 237 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3837ad2antrr 725 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3933, 38eqeltrd 2890 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
40 eldifsn 4680 . . . . . . . . . . 11 (𝑎 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑎𝐴𝑎𝑋))
41 gsumpt.s . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
427fvexi 6659 . . . . . . . . . . . . 13 0 ∈ V
4342a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
441, 41, 10, 43suppssr 7844 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝐴 ∖ {𝑋})) → (𝐹𝑎) = 0 )
4540, 44sylan2br 597 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) = 0 )
467subm0cl 17968 . . . . . . . . . . . 12 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4727, 46syl 17 . . . . . . . . . . 11 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4847adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4945, 48eqeltrd 2890 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5049anassrs 471 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5139, 50pm2.61dane 3074 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5251ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
53 ffnfv 6859 . . . . . 6 (𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
5431, 52, 53sylanbrc 586 . . . . 5 (𝜑𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5554frnd 6494 . . . 4 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
568cntzidss 18460 . . . 4 ((((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∧ ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
5730, 55, 56syl2anc 587 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
581ffund 6491 . . . 4 (𝜑 → Fun 𝐹)
59 snfi 8577 . . . . 5 {𝑋} ∈ Fin
60 ssfi 8722 . . . . 5 (({𝑋} ∈ Fin ∧ (𝐹 supp 0 ) ⊆ {𝑋}) → (𝐹 supp 0 ) ∈ Fin)
6159, 41, 60sylancr 590 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
62 fex 6966 . . . . . 6 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
631, 10, 62syl2anc 587 . . . . 5 (𝜑𝐹 ∈ V)
64 isfsupp 8821 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6563, 43, 64syl2anc 587 . . . 4 (𝜑 → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6658, 61, 65mpbir2and 712 . . 3 (𝜑𝐹 finSupp 0 )
676, 7, 8, 9, 10, 1, 57, 41, 66gsumzres 19022 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg 𝐹))
68 fveq2 6645 . . . 4 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
696, 68gsumsn 19067 . . 3 ((𝐺 ∈ Mnd ∧ 𝑋𝐴 ∧ (𝐹𝑋) ∈ 𝐵) → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
709, 2, 11, 69syl3anc 1368 . 2 (𝜑 → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
715, 67, 703eqtr3d 2841 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  Fincfn 8492   finSupp cfsupp 8817  Basecbs 16475  s cress 16476  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Mndcmnd 17903  SubMndcsubmnd 17947  Cntzccntz 18437  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900
This theorem is referenced by:  gsummpt1n0  19078  dprdfid  19132  uvcresum  20482  frlmup2  20488  evlslem3  20752  evlslem1  20754  coe1tmmul2  20905  coe1tmmul  20906  mamulid  21046  mamurid  21047  coe1mul3  24700  tayl0  24957  jensen  25574  linc1  44834
  Copyright terms: Public domain W3C validator