![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmfsupp | Structured version Visualization version GIF version |
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | ⊢ 𝑆 = (Scalar‘𝑀) |
scmsuppfi.r | ⊢ 𝑅 = (Base‘𝑆) |
Ref | Expression |
---|---|
scmfsupp | ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6606 | . . 3 ⊢ Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) | |
2 | 1 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣))) |
3 | id 22 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑆) → 𝐴 finSupp (0g‘𝑆)) | |
4 | 3 | fsuppimpd 9407 | . . 3 ⊢ (𝐴 finSupp (0g‘𝑆) → (𝐴 supp (0g‘𝑆)) ∈ Fin) |
5 | scmsuppfi.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
6 | scmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
7 | 5, 6 | scmsuppfi 48219 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
8 | 4, 7 | syl3an3 1164 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
9 | mptexg 7241 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) | |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) |
11 | 10 | 3ad2ant1 1132 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) |
12 | fvex 6920 | . . 3 ⊢ (0g‘𝑀) ∈ V | |
13 | isfsupp 9403 | . . 3 ⊢ (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin))) | |
14 | 11, 12, 13 | sylancl 586 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin))) |
15 | 2, 8, 14 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 𝒫 cpw 4605 class class class wbr 5148 ↦ cmpt 5231 Fun wfun 6557 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 finSupp cfsupp 9399 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-1o 8505 df-map 8867 df-en 8985 df-fin 8988 df-fsupp 9400 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-ring 20253 df-lmod 20877 |
This theorem is referenced by: gsumlsscl 48225 lincfsuppcl 48259 linccl 48260 lincdifsn 48270 lincsum 48275 lincscm 48276 lincresunit3lem2 48326 lincresunit3 48327 |
Copyright terms: Public domain | W3C validator |