Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmfsupp Structured version   Visualization version   GIF version

Theorem scmfsupp 47007
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalarβ€˜π‘€)
scmsuppfi.r 𝑅 = (Baseβ€˜π‘†)
Assertion
Ref Expression
scmfsupp (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmfsupp
StepHypRef Expression
1 funmpt 6583 . . 3 Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))
21a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
3 id 22 . . . 4 (𝐴 finSupp (0gβ€˜π‘†) β†’ 𝐴 finSupp (0gβ€˜π‘†))
43fsuppimpd 9365 . . 3 (𝐴 finSupp (0gβ€˜π‘†) β†’ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin)
5 scmsuppfi.s . . . 4 𝑆 = (Scalarβ€˜π‘€)
6 scmsuppfi.r . . . 4 𝑅 = (Baseβ€˜π‘†)
75, 6scmsuppfi 47006 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
84, 7syl3an3 1165 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
9 mptexg 7219 . . . . 5 (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V)
109adantl 482 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V)
11103ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V)
12 fvex 6901 . . 3 (0gβ€˜π‘€) ∈ V
13 isfsupp 9361 . . 3 (((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V ∧ (0gβ€˜π‘€) ∈ V) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)))
1411, 12, 13sylancl 586 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)))
152, 8, 14mpbir2and 711 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474  π’« cpw 4601   class class class wbr 5147   ↦ cmpt 5230  Fun wfun 6534  β€˜cfv 6540  (class class class)co 7405   supp csupp 8142   ↑m cmap 8816  Fincfn 8935   finSupp cfsupp 9357  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  LModclmod 20463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-1o 8462  df-map 8818  df-en 8936  df-fin 8939  df-fsupp 9358  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-ring 20051  df-lmod 20465
This theorem is referenced by:  gsumlsscl  47012  lincfsuppcl  47047  linccl  47048  lincdifsn  47058  lincsum  47063  lincscm  47064  lincresunit3lem2  47114  lincresunit3  47115
  Copyright terms: Public domain W3C validator