| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scmfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| scmsuppfi.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| scmsuppfi.r | ⊢ 𝑅 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| scmfsupp | ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6524 | . . 3 ⊢ Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣))) |
| 3 | id 22 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑆) → 𝐴 finSupp (0g‘𝑆)) | |
| 4 | 3 | fsuppimpd 9278 | . . 3 ⊢ (𝐴 finSupp (0g‘𝑆) → (𝐴 supp (0g‘𝑆)) ∈ Fin) |
| 5 | scmsuppfi.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 6 | scmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
| 7 | 5, 6 | scmsuppfi 48346 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
| 8 | 4, 7 | syl3an3 1165 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
| 9 | mptexg 7161 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) |
| 11 | 10 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) |
| 12 | fvex 6839 | . . 3 ⊢ (0g‘𝑀) ∈ V | |
| 13 | isfsupp 9274 | . . 3 ⊢ (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin))) | |
| 14 | 11, 12, 13 | sylancl 586 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin))) |
| 15 | 2, 8, 14 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 𝒫 cpw 4553 class class class wbr 5095 ↦ cmpt 5176 Fun wfun 6480 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 ↑m cmap 8760 Fincfn 8879 finSupp cfsupp 9270 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-1o 8395 df-map 8762 df-en 8880 df-fin 8883 df-fsupp 9271 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-ring 20138 df-lmod 20783 |
| This theorem is referenced by: gsumlsscl 48352 lincfsuppcl 48386 linccl 48387 lincdifsn 48397 lincsum 48402 lincscm 48403 lincresunit3lem2 48453 lincresunit3 48454 |
| Copyright terms: Public domain | W3C validator |