Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmfsupp Structured version   Visualization version   GIF version

Theorem scmfsupp 48103
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalar‘𝑀)
scmsuppfi.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmfsupp (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmfsupp
StepHypRef Expression
1 funmpt 6616 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
21a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
3 id 22 . . . 4 (𝐴 finSupp (0g𝑆) → 𝐴 finSupp (0g𝑆))
43fsuppimpd 9439 . . 3 (𝐴 finSupp (0g𝑆) → (𝐴 supp (0g𝑆)) ∈ Fin)
5 scmsuppfi.s . . . 4 𝑆 = (Scalar‘𝑀)
6 scmsuppfi.r . . . 4 𝑅 = (Base‘𝑆)
75, 6scmsuppfi 48102 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
84, 7syl3an3 1165 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
9 mptexg 7258 . . . . 5 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
109adantl 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
11103ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
12 fvex 6933 . . 3 (0g𝑀) ∈ V
13 isfsupp 9435 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)))
1411, 12, 13sylancl 585 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)))
152, 8, 14mpbir2and 712 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  Fun wfun 6567  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-1o 8522  df-map 8886  df-en 9004  df-fin 9007  df-fsupp 9432  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-lmod 20882
This theorem is referenced by:  gsumlsscl  48108  lincfsuppcl  48142  linccl  48143  lincdifsn  48153  lincsum  48158  lincscm  48159  lincresunit3lem2  48209  lincresunit3  48210
  Copyright terms: Public domain W3C validator