Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmfsupp Structured version   Visualization version   GIF version

Theorem scmfsupp 47209
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalarβ€˜π‘€)
scmsuppfi.r 𝑅 = (Baseβ€˜π‘†)
Assertion
Ref Expression
scmfsupp (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmfsupp
StepHypRef Expression
1 funmpt 6576 . . 3 Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))
21a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
3 id 22 . . . 4 (𝐴 finSupp (0gβ€˜π‘†) β†’ 𝐴 finSupp (0gβ€˜π‘†))
43fsuppimpd 9364 . . 3 (𝐴 finSupp (0gβ€˜π‘†) β†’ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin)
5 scmsuppfi.s . . . 4 𝑆 = (Scalarβ€˜π‘€)
6 scmsuppfi.r . . . 4 𝑅 = (Baseβ€˜π‘†)
75, 6scmsuppfi 47208 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0gβ€˜π‘†)) ∈ Fin) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
84, 7syl3an3 1162 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)
9 mptexg 7214 . . . . 5 (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V)
109adantl 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V)
11103ad2ant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V)
12 fvex 6894 . . 3 (0gβ€˜π‘€) ∈ V
13 isfsupp 9360 . . 3 (((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∈ V ∧ (0gβ€˜π‘€) ∈ V) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)))
1411, 12, 13sylancl 585 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) supp (0gβ€˜π‘€)) ∈ Fin)))
152, 8, 14mpbir2and 710 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜π‘†)) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3466  π’« cpw 4594   class class class wbr 5138   ↦ cmpt 5221  Fun wfun 6527  β€˜cfv 6533  (class class class)co 7401   supp csupp 8140   ↑m cmap 8815  Fincfn 8934   finSupp cfsupp 9356  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  LModclmod 20691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-1o 8461  df-map 8817  df-en 8935  df-fin 8938  df-fsupp 9357  df-0g 17383  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-grp 18853  df-ring 20125  df-lmod 20693
This theorem is referenced by:  gsumlsscl  47214  lincfsuppcl  47248  linccl  47249  lincdifsn  47259  lincsum  47264  lincscm  47265  lincresunit3lem2  47315  lincresunit3  47316
  Copyright terms: Public domain W3C validator