![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmfsupp | Structured version Visualization version GIF version |
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | β’ π = (Scalarβπ) |
scmsuppfi.r | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
scmfsupp | β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6583 | . . 3 β’ Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) | |
2 | 1 | a1i 11 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£))) |
3 | id 22 | . . . 4 β’ (π΄ finSupp (0gβπ) β π΄ finSupp (0gβπ)) | |
4 | 3 | fsuppimpd 9365 | . . 3 β’ (π΄ finSupp (0gβπ) β (π΄ supp (0gβπ)) β Fin) |
5 | scmsuppfi.s | . . . 4 β’ π = (Scalarβπ) | |
6 | scmsuppfi.r | . . . 4 β’ π = (Baseβπ) | |
7 | 5, 6 | scmsuppfi 47006 | . . 3 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
8 | 4, 7 | syl3an3 1165 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
9 | mptexg 7219 | . . . . 5 β’ (π β π« (Baseβπ) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V) | |
10 | 9 | adantl 482 | . . . 4 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V) |
11 | 10 | 3ad2ant1 1133 | . . 3 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V) |
12 | fvex 6901 | . . 3 β’ (0gβπ) β V | |
13 | isfsupp 9361 | . . 3 β’ (((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V β§ (0gβπ) β V) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ) β (Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β§ ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin))) | |
14 | 11, 12, 13 | sylancl 586 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ) β (Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β§ ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin))) |
15 | 2, 8, 14 | mpbir2and 711 | 1 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 π« cpw 4601 class class class wbr 5147 β¦ cmpt 5230 Fun wfun 6534 βcfv 6540 (class class class)co 7405 supp csupp 8142 βm cmap 8816 Fincfn 8935 finSupp cfsupp 9357 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 LModclmod 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-1o 8462 df-map 8818 df-en 8936 df-fin 8939 df-fsupp 9358 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-ring 20051 df-lmod 20465 |
This theorem is referenced by: gsumlsscl 47012 lincfsuppcl 47047 linccl 47048 lincdifsn 47058 lincsum 47063 lincscm 47064 lincresunit3lem2 47114 lincresunit3 47115 |
Copyright terms: Public domain | W3C validator |