![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmfsupp | Structured version Visualization version GIF version |
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | β’ π = (Scalarβπ) |
scmsuppfi.r | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
scmfsupp | β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6576 | . . 3 β’ Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) | |
2 | 1 | a1i 11 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£))) |
3 | id 22 | . . . 4 β’ (π΄ finSupp (0gβπ) β π΄ finSupp (0gβπ)) | |
4 | 3 | fsuppimpd 9364 | . . 3 β’ (π΄ finSupp (0gβπ) β (π΄ supp (0gβπ)) β Fin) |
5 | scmsuppfi.s | . . . 4 β’ π = (Scalarβπ) | |
6 | scmsuppfi.r | . . . 4 β’ π = (Baseβπ) | |
7 | 5, 6 | scmsuppfi 47208 | . . 3 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ (π΄ supp (0gβπ)) β Fin) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
8 | 4, 7 | syl3an3 1162 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin) |
9 | mptexg 7214 | . . . . 5 β’ (π β π« (Baseβπ) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V) | |
10 | 9 | adantl 481 | . . . 4 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V) |
11 | 10 | 3ad2ant1 1130 | . . 3 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V) |
12 | fvex 6894 | . . 3 β’ (0gβπ) β V | |
13 | isfsupp 9360 | . . 3 β’ (((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β V β§ (0gβπ) β V) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ) β (Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β§ ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin))) | |
14 | 11, 12, 13 | sylancl 585 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ) β (Fun (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) β§ ((π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) supp (0gβπ)) β Fin))) |
15 | 2, 8, 14 | mpbir2and 710 | 1 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ π΄ β (π βm π) β§ π΄ finSupp (0gβπ)) β (π£ β π β¦ ((π΄βπ£)( Β·π βπ)π£)) finSupp (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3466 π« cpw 4594 class class class wbr 5138 β¦ cmpt 5221 Fun wfun 6527 βcfv 6533 (class class class)co 7401 supp csupp 8140 βm cmap 8815 Fincfn 8934 finSupp cfsupp 9356 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 LModclmod 20691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-1o 8461 df-map 8817 df-en 8935 df-fin 8938 df-fsupp 9357 df-0g 17383 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-grp 18853 df-ring 20125 df-lmod 20693 |
This theorem is referenced by: gsumlsscl 47214 lincfsuppcl 47248 linccl 47249 lincdifsn 47259 lincsum 47264 lincscm 47265 lincresunit3lem2 47315 lincresunit3 47316 |
Copyright terms: Public domain | W3C validator |