| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| rmsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| rmfsupp | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6554 | . . 3 ⊢ Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣)))) |
| 3 | id 22 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑀) → 𝐴 finSupp (0g‘𝑀)) | |
| 4 | 3 | fsuppimpd 9320 | . . 3 ⊢ (𝐴 finSupp (0g‘𝑀) → (𝐴 supp (0g‘𝑀)) ∈ Fin) |
| 5 | rmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
| 6 | 5 | rmsuppfi 48360 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑀)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin) |
| 7 | 4, 6 | syl3an3 1165 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin) |
| 8 | mptexg 7195 | . . . . 5 ⊢ (𝑉 ∈ 𝑋 → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) | |
| 9 | 8 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) |
| 10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) |
| 11 | fvex 6871 | . . 3 ⊢ (0g‘𝑀) ∈ V | |
| 12 | isfsupp 9316 | . . 3 ⊢ (((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin))) | |
| 13 | 10, 11, 12 | sylancl 586 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin))) |
| 14 | 2, 7, 13 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 Basecbs 17179 .rcmulr 17221 0gc0g 17402 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: lincscmcl 48421 |
| Copyright terms: Public domain | W3C validator |