| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| rmsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| rmfsupp | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6514 | . . 3 ⊢ Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣)))) |
| 3 | id 22 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑀) → 𝐴 finSupp (0g‘𝑀)) | |
| 4 | 3 | fsuppimpd 9248 | . . 3 ⊢ (𝐴 finSupp (0g‘𝑀) → (𝐴 supp (0g‘𝑀)) ∈ Fin) |
| 5 | rmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
| 6 | 5 | rmsuppfi 48403 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑀)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin) |
| 7 | 4, 6 | syl3an3 1165 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin) |
| 8 | mptexg 7150 | . . . . 5 ⊢ (𝑉 ∈ 𝑋 → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) | |
| 9 | 8 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) |
| 10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) |
| 11 | fvex 6830 | . . 3 ⊢ (0g‘𝑀) ∈ V | |
| 12 | isfsupp 9244 | . . 3 ⊢ (((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin))) | |
| 13 | 10, 11, 12 | sylancl 586 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin))) |
| 14 | 2, 7, 13 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 ↦ cmpt 5167 Fun wfun 6470 ‘cfv 6476 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 Basecbs 17115 .rcmulr 17157 0gc0g 17338 Ringcrg 20146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 |
| This theorem is referenced by: lincscmcl 48464 |
| Copyright terms: Public domain | W3C validator |