Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp Structured version   Visualization version   GIF version

Theorem rmfsupp 45598
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypothesis
Ref Expression
rmsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmfsupp (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmfsupp
StepHypRef Expression
1 funmpt 6456 . . 3 Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣)))
21a1i 11 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))))
3 id 22 . . . 4 (𝐴 finSupp (0g𝑀) → 𝐴 finSupp (0g𝑀))
43fsuppimpd 9065 . . 3 (𝐴 finSupp (0g𝑀) → (𝐴 supp (0g𝑀)) ∈ Fin)
5 rmsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
65rmsuppfi 45597 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
74, 6syl3an3 1163 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
8 mptexg 7079 . . . . 5 (𝑉𝑋 → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
983ad2ant2 1132 . . . 4 ((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
1093ad2ant1 1131 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
11 fvex 6769 . . 3 (0g𝑀) ∈ V
12 isfsupp 9062 . . 3 (((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)))
1310, 11, 12sylancl 585 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)))
142, 7, 13mpbir2and 709 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  cmpt 5153  Fun wfun 6412  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ring 19700
This theorem is referenced by:  lincscmcl  45661
  Copyright terms: Public domain W3C validator