Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp Structured version   Visualization version   GIF version

Theorem rmfsupp 47307
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypothesis
Ref Expression
rmsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmfsupp (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmfsupp
StepHypRef Expression
1 funmpt 6579 . . 3 Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣)))
21a1i 11 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))))
3 id 22 . . . 4 (𝐴 finSupp (0g𝑀) → 𝐴 finSupp (0g𝑀))
43fsuppimpd 9368 . . 3 (𝐴 finSupp (0g𝑀) → (𝐴 supp (0g𝑀)) ∈ Fin)
5 rmsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
65rmsuppfi 47306 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ (𝐴 supp (0g𝑀)) ∈ Fin) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
74, 6syl3an3 1162 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)
8 mptexg 7217 . . . . 5 (𝑉𝑋 → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
983ad2ant2 1131 . . . 4 ((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
1093ad2ant1 1130 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V)
11 fvex 6897 . . 3 (0g𝑀) ∈ V
12 isfsupp 9364 . . 3 (((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)))
1310, 11, 12sylancl 585 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) ∧ ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ∈ Fin)))
142, 7, 13mpbir2and 710 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g𝑀)) → (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3468   class class class wbr 5141  cmpt 5224  Fun wfun 6530  cfv 6536  (class class class)co 7404   supp csupp 8143  m cmap 8819  Fincfn 8938   finSupp cfsupp 9360  Basecbs 17151  .rcmulr 17205  0gc0g 17392  Ringcrg 20136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-cmn 19700  df-abl 19701  df-mgp 20038  df-rng 20056  df-ur 20085  df-ring 20138
This theorem is referenced by:  lincscmcl  47369
  Copyright terms: Public domain W3C validator