| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmfsupp | Structured version Visualization version GIF version | ||
| Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| rmsuppfi.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| rmfsupp | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6562 | . . 3 ⊢ Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣)))) |
| 3 | id 22 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑀) → 𝐴 finSupp (0g‘𝑀)) | |
| 4 | 3 | fsuppimpd 9338 | . . 3 ⊢ (𝐴 finSupp (0g‘𝑀) → (𝐴 supp (0g‘𝑀)) ∈ Fin) |
| 5 | rmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑀) | |
| 6 | 5 | rmsuppfi 48289 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑀)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin) |
| 7 | 4, 6 | syl3an3 1165 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin) |
| 8 | mptexg 7202 | . . . . 5 ⊢ (𝑉 ∈ 𝑋 → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) | |
| 9 | 8 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) |
| 10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V) |
| 11 | fvex 6878 | . . 3 ⊢ (0g‘𝑀) ∈ V | |
| 12 | isfsupp 9334 | . . 3 ⊢ (((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin))) | |
| 13 | 10, 11, 12 | sylancl 586 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ∈ Fin))) |
| 14 | 2, 7, 13 | mpbir2and 713 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑀)) → (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) finSupp (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 ↦ cmpt 5196 Fun wfun 6513 ‘cfv 6519 (class class class)co 7394 supp csupp 8148 ↑m cmap 8803 Fincfn 8922 finSupp cfsupp 9330 Basecbs 17185 .rcmulr 17227 0gc0g 17408 Ringcrg 20148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 |
| This theorem is referenced by: lincscmcl 48350 |
| Copyright terms: Public domain | W3C validator |