![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppco2 | Structured version Visualization version GIF version |
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9442 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppco2.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppco2.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
fsuppco2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
fsuppco2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsuppco2.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppco2.i | ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) |
Ref | Expression |
---|---|
fsuppco2 | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppco2.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) | |
2 | 1 | ffund 6741 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
3 | fsuppco2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
4 | 3 | ffund 6741 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
5 | funco 6608 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
7 | fsuppco2.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
8 | 7 | fsuppimpd 9407 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
9 | fco 6761 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹):𝐴⟶𝐵) | |
10 | 1, 3, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐵) |
11 | eldifi 4141 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
12 | fvco3 7008 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
13 | 3, 11, 12 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
14 | ssidd 4019 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
15 | fsuppco2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
16 | fsuppco2.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
17 | 3, 14, 15, 16 | suppssr 8219 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
18 | 17 | fveq2d 6911 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
19 | fsuppco2.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) | |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 𝑍) |
21 | 13, 18, 20 | 3eqtrd 2779 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 𝑍) |
22 | 10, 21 | suppss 8218 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
23 | 8, 22 | ssfid 9299 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin) |
24 | fsuppco2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
25 | 1, 24 | fexd 7247 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
26 | 3, 15 | fexd 7247 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
27 | coexg 7952 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
28 | 25, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
29 | isfsupp 9403 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) | |
30 | 28, 16, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) |
31 | 6, 23, 30 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 class class class wbr 5148 ∘ ccom 5693 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 Fincfn 8984 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-supp 8185 df-1o 8505 df-en 8985 df-fin 8988 df-fsupp 9400 |
This theorem is referenced by: gsumzinv 19978 gsumsub 19981 elrgspnlem1 33232 |
Copyright terms: Public domain | W3C validator |