| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppco2 | Structured version Visualization version GIF version | ||
| Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9416 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fsuppco2.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fsuppco2.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
| fsuppco2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| fsuppco2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fsuppco2.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppco2.i | ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) |
| Ref | Expression |
|---|---|
| fsuppco2 | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppco2.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) | |
| 2 | 1 | ffund 6710 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 3 | fsuppco2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 4 | 3 | ffund 6710 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 5 | funco 6576 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
| 7 | fsuppco2.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 8 | 7 | fsuppimpd 9381 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 9 | fco 6730 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹):𝐴⟶𝐵) | |
| 10 | 1, 3, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐵) |
| 11 | eldifi 4106 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
| 12 | fvco3 6978 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
| 13 | 3, 11, 12 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 14 | ssidd 3982 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
| 15 | fsuppco2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 16 | fsuppco2.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 17 | 3, 14, 15, 16 | suppssr 8194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
| 18 | 17 | fveq2d 6880 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
| 19 | fsuppco2.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) | |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 𝑍) |
| 21 | 13, 18, 20 | 3eqtrd 2774 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 𝑍) |
| 22 | 10, 21 | suppss 8193 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
| 23 | 8, 22 | ssfid 9273 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin) |
| 24 | fsuppco2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 25 | 1, 24 | fexd 7219 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 26 | 3, 15 | fexd 7219 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 27 | coexg 7925 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
| 28 | 25, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 29 | isfsupp 9377 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) | |
| 30 | 28, 16, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) |
| 31 | 6, 23, 30 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 class class class wbr 5119 ∘ ccom 5658 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supp csupp 8159 Fincfn 8959 finSupp cfsupp 9373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-supp 8160 df-1o 8480 df-en 8960 df-fin 8963 df-fsupp 9374 |
| This theorem is referenced by: gsumzinv 19926 gsumsub 19929 elrgspnlem1 33237 |
| Copyright terms: Public domain | W3C validator |