MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco2 Structured version   Visualization version   GIF version

Theorem fsuppco2 9415
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9416 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppco2.z (𝜑𝑍𝑊)
fsuppco2.f (𝜑𝐹:𝐴𝐵)
fsuppco2.g (𝜑𝐺:𝐵𝐵)
fsuppco2.a (𝜑𝐴𝑈)
fsuppco2.b (𝜑𝐵𝑉)
fsuppco2.n (𝜑𝐹 finSupp 𝑍)
fsuppco2.i (𝜑 → (𝐺𝑍) = 𝑍)
Assertion
Ref Expression
fsuppco2 (𝜑 → (𝐺𝐹) finSupp 𝑍)

Proof of Theorem fsuppco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsuppco2.g . . . 4 (𝜑𝐺:𝐵𝐵)
21ffund 6710 . . 3 (𝜑 → Fun 𝐺)
3 fsuppco2.f . . . 4 (𝜑𝐹:𝐴𝐵)
43ffund 6710 . . 3 (𝜑 → Fun 𝐹)
5 funco 6576 . . 3 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
62, 4, 5syl2anc 584 . 2 (𝜑 → Fun (𝐺𝐹))
7 fsuppco2.n . . . 4 (𝜑𝐹 finSupp 𝑍)
87fsuppimpd 9381 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
9 fco 6730 . . . . 5 ((𝐺:𝐵𝐵𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐵)
101, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):𝐴𝐵)
11 eldifi 4106 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
12 fvco3 6978 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
133, 11, 12syl2an 596 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
14 ssidd 3982 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
15 fsuppco2.a . . . . . . 7 (𝜑𝐴𝑈)
16 fsuppco2.z . . . . . . 7 (𝜑𝑍𝑊)
173, 14, 15, 16suppssr 8194 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
1817fveq2d 6880 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹𝑥)) = (𝐺𝑍))
19 fsuppco2.i . . . . . 6 (𝜑 → (𝐺𝑍) = 𝑍)
2019adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺𝑍) = 𝑍)
2113, 18, 203eqtrd 2774 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = 𝑍)
2210, 21suppss 8193 . . 3 (𝜑 → ((𝐺𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍))
238, 22ssfid 9273 . 2 (𝜑 → ((𝐺𝐹) supp 𝑍) ∈ Fin)
24 fsuppco2.b . . . . 5 (𝜑𝐵𝑉)
251, 24fexd 7219 . . . 4 (𝜑𝐺 ∈ V)
263, 15fexd 7219 . . . 4 (𝜑𝐹 ∈ V)
27 coexg 7925 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺𝐹) ∈ V)
2825, 26, 27syl2anc 584 . . 3 (𝜑 → (𝐺𝐹) ∈ V)
29 isfsupp 9377 . . 3 (((𝐺𝐹) ∈ V ∧ 𝑍𝑊) → ((𝐺𝐹) finSupp 𝑍 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 𝑍) ∈ Fin)))
3028, 16, 29syl2anc 584 . 2 (𝜑 → ((𝐺𝐹) finSupp 𝑍 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 𝑍) ∈ Fin)))
316, 23, 30mpbir2and 713 1 (𝜑 → (𝐺𝐹) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923   class class class wbr 5119  ccom 5658  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-supp 8160  df-1o 8480  df-en 8960  df-fin 8963  df-fsupp 9374
This theorem is referenced by:  gsumzinv  19926  gsumsub  19929  elrgspnlem1  33237
  Copyright terms: Public domain W3C validator