![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppco2 | Structured version Visualization version GIF version |
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9401 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppco2.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppco2.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
fsuppco2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
fsuppco2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsuppco2.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppco2.i | ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) |
Ref | Expression |
---|---|
fsuppco2 | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppco2.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) | |
2 | 1 | ffund 6720 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
3 | fsuppco2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
4 | 3 | ffund 6720 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
5 | funco 6587 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
6 | 2, 4, 5 | syl2anc 582 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
7 | fsuppco2.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
8 | 7 | fsuppimpd 9371 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
9 | fco 6740 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹):𝐴⟶𝐵) | |
10 | 1, 3, 9 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐵) |
11 | eldifi 4125 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
12 | fvco3 6989 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
13 | 3, 11, 12 | syl2an 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
14 | ssidd 4004 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
15 | fsuppco2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
16 | fsuppco2.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
17 | 3, 14, 15, 16 | suppssr 8183 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
18 | 17 | fveq2d 6894 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
19 | fsuppco2.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) | |
20 | 19 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 𝑍) |
21 | 13, 18, 20 | 3eqtrd 2774 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 𝑍) |
22 | 10, 21 | suppss 8181 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
23 | 8, 22 | ssfid 9269 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin) |
24 | fsuppco2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
25 | 1, 24 | fexd 7230 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
26 | 3, 15 | fexd 7230 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
27 | coexg 7922 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
28 | 25, 26, 27 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
29 | isfsupp 9367 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) | |
30 | 28, 16, 29 | syl2anc 582 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) |
31 | 6, 23, 30 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∖ cdif 3944 class class class wbr 5147 ∘ ccom 5679 Fun wfun 6536 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 supp csupp 8148 Fincfn 8941 finSupp cfsupp 9363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-supp 8149 df-1o 8468 df-en 8942 df-fin 8945 df-fsupp 9364 |
This theorem is referenced by: gsumzinv 19854 gsumsub 19857 |
Copyright terms: Public domain | W3C validator |