MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco2 Structured version   Visualization version   GIF version

Theorem fsuppco2 9354
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9355 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppco2.z (𝜑𝑍𝑊)
fsuppco2.f (𝜑𝐹:𝐴𝐵)
fsuppco2.g (𝜑𝐺:𝐵𝐵)
fsuppco2.a (𝜑𝐴𝑈)
fsuppco2.b (𝜑𝐵𝑉)
fsuppco2.n (𝜑𝐹 finSupp 𝑍)
fsuppco2.i (𝜑 → (𝐺𝑍) = 𝑍)
Assertion
Ref Expression
fsuppco2 (𝜑 → (𝐺𝐹) finSupp 𝑍)

Proof of Theorem fsuppco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsuppco2.g . . . 4 (𝜑𝐺:𝐵𝐵)
21ffund 6692 . . 3 (𝜑 → Fun 𝐺)
3 fsuppco2.f . . . 4 (𝜑𝐹:𝐴𝐵)
43ffund 6692 . . 3 (𝜑 → Fun 𝐹)
5 funco 6556 . . 3 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
62, 4, 5syl2anc 584 . 2 (𝜑 → Fun (𝐺𝐹))
7 fsuppco2.n . . . 4 (𝜑𝐹 finSupp 𝑍)
87fsuppimpd 9320 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
9 fco 6712 . . . . 5 ((𝐺:𝐵𝐵𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐵)
101, 3, 9syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):𝐴𝐵)
11 eldifi 4094 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
12 fvco3 6960 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
133, 11, 12syl2an 596 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
14 ssidd 3970 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
15 fsuppco2.a . . . . . . 7 (𝜑𝐴𝑈)
16 fsuppco2.z . . . . . . 7 (𝜑𝑍𝑊)
173, 14, 15, 16suppssr 8174 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
1817fveq2d 6862 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹𝑥)) = (𝐺𝑍))
19 fsuppco2.i . . . . . 6 (𝜑 → (𝐺𝑍) = 𝑍)
2019adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺𝑍) = 𝑍)
2113, 18, 203eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = 𝑍)
2210, 21suppss 8173 . . 3 (𝜑 → ((𝐺𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍))
238, 22ssfid 9212 . 2 (𝜑 → ((𝐺𝐹) supp 𝑍) ∈ Fin)
24 fsuppco2.b . . . . 5 (𝜑𝐵𝑉)
251, 24fexd 7201 . . . 4 (𝜑𝐺 ∈ V)
263, 15fexd 7201 . . . 4 (𝜑𝐹 ∈ V)
27 coexg 7905 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺𝐹) ∈ V)
2825, 26, 27syl2anc 584 . . 3 (𝜑 → (𝐺𝐹) ∈ V)
29 isfsupp 9316 . . 3 (((𝐺𝐹) ∈ V ∧ 𝑍𝑊) → ((𝐺𝐹) finSupp 𝑍 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 𝑍) ∈ Fin)))
3028, 16, 29syl2anc 584 . 2 (𝜑 → ((𝐺𝐹) finSupp 𝑍 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 𝑍) ∈ Fin)))
316, 23, 30mpbir2and 713 1 (𝜑 → (𝐺𝐹) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911   class class class wbr 5107  ccom 5642  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-supp 8140  df-1o 8434  df-en 8919  df-fin 8922  df-fsupp 9313
This theorem is referenced by:  gsumzinv  19875  gsumsub  19878  elrgspnlem1  33193
  Copyright terms: Public domain W3C validator