Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem4-rN Structured version   Visualization version   GIF version

Theorem erngdvlem4-rN 38707
Description: Lemma for erngdv 38701. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m-r 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
edlemk6.j-r = (join‘𝐾)
edlemk6.m-r = (meet‘𝐾)
edlemk6.r-r 𝑅 = ((trL‘𝐾)‘𝑊)
edlemk6.p-r 𝑄 = ((oc‘𝐾)‘𝑊)
edlemk6.z-r 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
edlemk6.y-r 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
edlemk6.x-r 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
edlemk6.u-r 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
Assertion
Ref Expression
erngdvlem4-rN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Distinct variable groups:   𝐵,𝑓   𝐷,𝑠   𝑎,𝑏,𝑠,𝐸   𝑓,𝑎,𝐾,𝑏,𝑠   𝑓,𝐻,𝑠   𝑂,𝑠   𝑇,𝑎,𝑏,𝑓,𝑠   𝑊,𝑎,𝑏,𝑓,𝑠   𝑃,𝑠   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐵,𝑏   𝑔,𝑠,𝐵,𝑧   𝐻,𝑏,𝑔,𝑧   𝑔,𝐾,𝑧   𝑀,𝑠   𝑃,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑔,𝑧   𝑔,𝑊,𝑧   𝑧,𝑌   𝑔,𝑍   𝑓,𝑔,𝑧   ,𝑏,𝑔,𝑠,𝑧
Allowed substitution hints:   𝐵(,𝑎)   𝐷(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑃(𝑓,,𝑎,𝑏)   𝑄(𝑓,,𝑠,𝑎)   𝑅(𝑓,,𝑠,𝑎)   𝑇()   𝑈(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝐸(𝑧,𝑓,𝑔,)   𝐻(,𝑎)   𝐼(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝐾()   𝑀(𝑧,𝑓,𝑔,,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝑂(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑊()   𝑋(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑌(𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑍(𝑧,𝑓,,𝑠,𝑎,𝑏)

Proof of Theorem erngdvlem4-rN
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . . 5 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . . 5 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 38517 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2740 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
87adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷))
9 erngrnglem.m-r . . . 4 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
10 eqid 2734 . . . . 5 (.r𝐷) = (.r𝐷)
111, 2, 3, 4, 10erngfmul-rN 38521 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎)))
129, 11eqtr4id 2793 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (.r𝐷))
1312adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝑀 = (.r𝐷))
14 ernggrplem.b-r . . . . . . 7 𝐵 = (Base‘𝐾)
15 ernggrplem.o-r . . . . . . 7 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1614, 1, 2, 3, 15tendo0cl 38498 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1716, 6eleqtrrd 2837 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ (Base‘𝐷))
18 ernggrplem.p-r . . . . . . . 8 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
19 eqid 2734 . . . . . . . . 9 (+g𝐷) = (+g𝐷)
201, 2, 3, 4, 19erngfplus-rN 38518 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
2118, 20eqtr4id 2793 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
2221oveqd 7219 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂𝑃𝑂) = (𝑂(+g𝐷)𝑂))
2314, 1, 2, 3, 15, 18tendo0pl 38499 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂𝐸) → (𝑂𝑃𝑂) = 𝑂)
2416, 23mpdan 687 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂𝑃𝑂) = 𝑂)
2522, 24eqtr3d 2776 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = 𝑂)
26 ernggrplem.i-r . . . . . . 7 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
271, 4, 14, 2, 3, 18, 15, 26erngdvlem1-rN 38704 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
28 eqid 2734 . . . . . . 7 (0g𝐷) = (0g𝐷)
295, 19, 28isgrpid2 18376 . . . . . 6 (𝐷 ∈ Grp → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g𝐷)𝑂) = 𝑂) ↔ (0g𝐷) = 𝑂))
3027, 29syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g𝐷)𝑂) = 𝑂) ↔ (0g𝐷) = 𝑂))
3117, 25, 30mpbi2and 712 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = 𝑂)
3231eqcomd 2740 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 = (0g𝐷))
3332adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝑂 = (0g𝐷))
341, 2, 3tendoidcl 38477 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
3534, 6eleqtrrd 2837 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
366eleq2d 2819 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢 ∈ (Base‘𝐷) ↔ 𝑢𝐸))
37 simpl 486 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3834adantr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
39 simpr 488 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → 𝑢𝐸)
401, 2, 3, 4, 10erngmul-rN 38522 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑢𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇)))
4137, 38, 39, 40syl12anc 837 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇)))
421, 2, 3tendo1mulr 38479 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢 ∘ ( I ↾ 𝑇)) = 𝑢)
4341, 42eqtrd 2774 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢)
441, 2, 3, 4, 10erngmul-rN 38522 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑢(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢))
4537, 39, 38, 44syl12anc 837 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢))
461, 2, 3tendo1mul 38478 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇) ∘ 𝑢) = 𝑢)
4745, 46eqtrd 2774 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)
4843, 47jca 515 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢))
4948ex 416 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢𝐸 → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)))
5036, 49sylbid 243 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢 ∈ (Base‘𝐷) → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)))
5150ralrimiv 3097 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢))
521, 4, 14, 2, 3, 18, 15, 26, 9erngdvlem3-rN 38706 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
53 eqid 2734 . . . . . . 7 (1r𝐷) = (1r𝐷)
545, 10, 53isringid 19563 . . . . . 6 (𝐷 ∈ Ring → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
5552, 54syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
5635, 51, 55mpbi2and 712 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
5756eqcomd 2740 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
5857adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r𝐷))
5952adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring)
60 simp1l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6112oveqd 7219 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
6260, 61syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
63 simp2l 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → 𝑠𝐸)
64 simp3l 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → 𝑡𝐸)
651, 2, 3, 4, 10erngmul-rN 38522 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
6660, 63, 64, 65syl12anc 837 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
6762, 66eqtrd 2774 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) = (𝑡𝑠))
68 simp3 1140 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑡𝐸𝑡𝑂))
69 simp2 1139 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝐸𝑠𝑂))
7014, 1, 2, 3, 15tendoconid 38537 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑡𝑂) ∧ (𝑠𝐸𝑠𝑂)) → (𝑡𝑠) ≠ 𝑂)
7160, 68, 69, 70syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑡𝑠) ≠ 𝑂)
7267, 71eqnetrd 3002 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) ≠ 𝑂)
7314, 1, 2, 3, 15tendo1ne0 38536 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
7473adantr 484 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 𝑂)
75 simpll 767 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simplrl 777 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑇)
77 simpr 488 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝐸𝑠𝑂))
78 edlemk6.j-r . . . . 5 = (join‘𝐾)
79 edlemk6.m-r . . . . 5 = (meet‘𝐾)
80 edlemk6.r-r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
81 edlemk6.p-r . . . . 5 𝑄 = ((oc‘𝐾)‘𝑊)
82 edlemk6.z-r . . . . 5 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
83 edlemk6.y-r . . . . 5 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
84 edlemk6.x-r . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
85 edlemk6.u-r . . . . 5 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
8614, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml6 38689 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝐸 ∧ (𝑈‘(𝑠)) = ))
8786simpld 498 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝐸)
8875, 76, 77, 87syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝐸)
8914, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml9 38692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝑂)
90893expa 1120 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝑂)
9112oveqd 7219 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑈) = (𝑠(.r𝐷)𝑈))
9291ad2antrr 726 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝑀𝑈) = (𝑠(.r𝐷)𝑈))
93 simprl 771 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑠𝐸)
941, 2, 3, 4, 10erngmul-rN 38522 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑈𝐸)) → (𝑠(.r𝐷)𝑈) = (𝑈𝑠))
9575, 93, 88, 94syl12anc 837 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠(.r𝐷)𝑈) = (𝑈𝑠))
9614, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml8 38691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝑠) = ( I ↾ 𝑇))
97963expa 1120 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝑠) = ( I ↾ 𝑇))
9895, 97eqtrd 2774 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠(.r𝐷)𝑈) = ( I ↾ 𝑇))
9992, 98eqtrd 2774 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝑀𝑈) = ( I ↾ 𝑇))
1008, 13, 33, 58, 59, 72, 74, 88, 90, 99isdrngrd 19765 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  ifcif 4429  cmpt 5124   I cid 5443  ccnv 5539  cres 5542  ccom 5544  cfv 6369  crio 7158  (class class class)co 7202  cmpo 7204  Basecbs 16684  +gcplusg 16767  .rcmulr 16768  occoc 16775  0gc0g 16916  joincjn 17790  meetcmee 17791  Grpcgrp 18337  1rcur 19488  Ringcrg 19534  DivRingcdr 19739  HLchlt 37058  LHypclh 37692  LTrncltrn 37809  trLctrl 37866  TEndoctendo 38460  EDRingRcedring-rN 38462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-riotaBAD 36661
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-undef 8004  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-0g 16918  df-proset 17774  df-poset 17792  df-plt 17808  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-p0 17903  df-p1 17904  df-lat 17910  df-clat 17977  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-mgp 19477  df-ur 19489  df-ring 19536  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-dvr 19673  df-drng 19741  df-oposet 36884  df-ol 36886  df-oml 36887  df-covers 36974  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-llines 37206  df-lplanes 37207  df-lvols 37208  df-lines 37209  df-psubsp 37211  df-pmap 37212  df-padd 37504  df-lhyp 37696  df-laut 37697  df-ldil 37812  df-ltrn 37813  df-trl 37867  df-tendo 38463  df-edring-rN 38464
This theorem is referenced by:  erngdv-rN  38709
  Copyright terms: Public domain W3C validator