Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem4-rN Structured version   Visualization version   GIF version

Theorem erngdvlem4-rN 40958
Description: Lemma for erngdv 40952. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m-r 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
edlemk6.j-r = (join‘𝐾)
edlemk6.m-r = (meet‘𝐾)
edlemk6.r-r 𝑅 = ((trL‘𝐾)‘𝑊)
edlemk6.p-r 𝑄 = ((oc‘𝐾)‘𝑊)
edlemk6.z-r 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
edlemk6.y-r 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
edlemk6.x-r 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
edlemk6.u-r 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
Assertion
Ref Expression
erngdvlem4-rN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Distinct variable groups:   𝐵,𝑓   𝐷,𝑠   𝑎,𝑏,𝑠,𝐸   𝑓,𝑎,𝐾,𝑏,𝑠   𝑓,𝐻,𝑠   𝑂,𝑠   𝑇,𝑎,𝑏,𝑓,𝑠   𝑊,𝑎,𝑏,𝑓,𝑠   𝑃,𝑠   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐵,𝑏   𝑔,𝑠,𝐵,𝑧   𝐻,𝑏,𝑔,𝑧   𝑔,𝐾,𝑧   𝑀,𝑠   𝑃,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑔,𝑧   𝑔,𝑊,𝑧   𝑧,𝑌   𝑔,𝑍   𝑓,𝑔,𝑧   ,𝑏,𝑔,𝑠,𝑧
Allowed substitution hints:   𝐵(,𝑎)   𝐷(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑃(𝑓,,𝑎,𝑏)   𝑄(𝑓,,𝑠,𝑎)   𝑅(𝑓,,𝑠,𝑎)   𝑇()   𝑈(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝐸(𝑧,𝑓,𝑔,)   𝐻(,𝑎)   𝐼(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝐾()   𝑀(𝑧,𝑓,𝑔,,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝑂(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑊()   𝑋(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑌(𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑍(𝑧,𝑓,,𝑠,𝑎,𝑏)

Proof of Theorem erngdvlem4-rN
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . . 5 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . . 5 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2740 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 40768 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2746 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
87adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷))
9 erngrnglem.m-r . . . 4 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
10 eqid 2740 . . . . 5 (.r𝐷) = (.r𝐷)
111, 2, 3, 4, 10erngfmul-rN 40772 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎)))
129, 11eqtr4id 2799 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (.r𝐷))
1312adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝑀 = (.r𝐷))
14 ernggrplem.b-r . . . . . . 7 𝐵 = (Base‘𝐾)
15 ernggrplem.o-r . . . . . . 7 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1614, 1, 2, 3, 15tendo0cl 40749 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1716, 6eleqtrrd 2847 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ (Base‘𝐷))
18 ernggrplem.p-r . . . . . . . 8 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
19 eqid 2740 . . . . . . . . 9 (+g𝐷) = (+g𝐷)
201, 2, 3, 4, 19erngfplus-rN 40769 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
2118, 20eqtr4id 2799 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
2221oveqd 7467 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂𝑃𝑂) = (𝑂(+g𝐷)𝑂))
2314, 1, 2, 3, 15, 18tendo0pl 40750 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂𝐸) → (𝑂𝑃𝑂) = 𝑂)
2416, 23mpdan 686 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂𝑃𝑂) = 𝑂)
2522, 24eqtr3d 2782 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = 𝑂)
26 ernggrplem.i-r . . . . . . 7 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
271, 4, 14, 2, 3, 18, 15, 26erngdvlem1-rN 40955 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
28 eqid 2740 . . . . . . 7 (0g𝐷) = (0g𝐷)
295, 19, 28isgrpid2 19018 . . . . . 6 (𝐷 ∈ Grp → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g𝐷)𝑂) = 𝑂) ↔ (0g𝐷) = 𝑂))
3027, 29syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g𝐷)𝑂) = 𝑂) ↔ (0g𝐷) = 𝑂))
3117, 25, 30mpbi2and 711 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = 𝑂)
3231eqcomd 2746 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 = (0g𝐷))
3332adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝑂 = (0g𝐷))
341, 2, 3tendoidcl 40728 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
3534, 6eleqtrrd 2847 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
366eleq2d 2830 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢 ∈ (Base‘𝐷) ↔ 𝑢𝐸))
37 simpl 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3834adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
39 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → 𝑢𝐸)
401, 2, 3, 4, 10erngmul-rN 40773 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑢𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇)))
4137, 38, 39, 40syl12anc 836 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇)))
421, 2, 3tendo1mulr 40730 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢 ∘ ( I ↾ 𝑇)) = 𝑢)
4341, 42eqtrd 2780 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢)
441, 2, 3, 4, 10erngmul-rN 40773 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑢(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢))
4537, 39, 38, 44syl12anc 836 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢))
461, 2, 3tendo1mul 40729 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇) ∘ 𝑢) = 𝑢)
4745, 46eqtrd 2780 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)
4843, 47jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢))
4948ex 412 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢𝐸 → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)))
5036, 49sylbid 240 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢 ∈ (Base‘𝐷) → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)))
5150ralrimiv 3151 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢))
521, 4, 14, 2, 3, 18, 15, 26, 9erngdvlem3-rN 40957 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
53 eqid 2740 . . . . . . 7 (1r𝐷) = (1r𝐷)
545, 10, 53isringid 20296 . . . . . 6 (𝐷 ∈ Ring → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
5552, 54syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
5635, 51, 55mpbi2and 711 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
5756eqcomd 2746 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
5857adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r𝐷))
5952adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring)
60 simp1l 1197 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6112oveqd 7467 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
6260, 61syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
63 simp2l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → 𝑠𝐸)
64 simp3l 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → 𝑡𝐸)
651, 2, 3, 4, 10erngmul-rN 40773 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
6660, 63, 64, 65syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
6762, 66eqtrd 2780 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) = (𝑡𝑠))
68 simp3 1138 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑡𝐸𝑡𝑂))
69 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝐸𝑠𝑂))
7014, 1, 2, 3, 15tendoconid 40788 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑡𝑂) ∧ (𝑠𝐸𝑠𝑂)) → (𝑡𝑠) ≠ 𝑂)
7160, 68, 69, 70syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑡𝑠) ≠ 𝑂)
7267, 71eqnetrd 3014 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) ≠ 𝑂)
7314, 1, 2, 3, 15tendo1ne0 40787 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
7473adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 𝑂)
75 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simplrl 776 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑇)
77 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝐸𝑠𝑂))
78 edlemk6.j-r . . . . 5 = (join‘𝐾)
79 edlemk6.m-r . . . . 5 = (meet‘𝐾)
80 edlemk6.r-r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
81 edlemk6.p-r . . . . 5 𝑄 = ((oc‘𝐾)‘𝑊)
82 edlemk6.z-r . . . . 5 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
83 edlemk6.y-r . . . . 5 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
84 edlemk6.x-r . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
85 edlemk6.u-r . . . . 5 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
8614, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml6 40940 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝐸 ∧ (𝑈‘(𝑠)) = ))
8786simpld 494 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝐸)
8875, 76, 77, 87syl3anc 1371 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝐸)
8912oveqd 7467 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑈) = (𝑠(.r𝐷)𝑈))
9089ad2antrr 725 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝑀𝑈) = (𝑠(.r𝐷)𝑈))
91 simprl 770 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑠𝐸)
921, 2, 3, 4, 10erngmul-rN 40773 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑈𝐸)) → (𝑠(.r𝐷)𝑈) = (𝑈𝑠))
9375, 91, 88, 92syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠(.r𝐷)𝑈) = (𝑈𝑠))
9414, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml8 40942 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝑠) = ( I ↾ 𝑇))
95943expa 1118 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝑠) = ( I ↾ 𝑇))
9693, 95eqtrd 2780 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠(.r𝐷)𝑈) = ( I ↾ 𝑇))
9790, 96eqtrd 2780 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝑀𝑈) = ( I ↾ 𝑇))
988, 13, 33, 58, 59, 72, 74, 88, 97isdrngrd 20790 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  ifcif 4548  cmpt 5249   I cid 5592  ccnv 5699  cres 5702  ccom 5704  cfv 6575  crio 7405  (class class class)co 7450  cmpo 7452  Basecbs 17260  +gcplusg 17313  .rcmulr 17314  occoc 17321  0gc0g 17501  joincjn 18383  meetcmee 18384  Grpcgrp 18975  1rcur 20210  Ringcrg 20262  DivRingcdr 20753  HLchlt 39308  LHypclh 39943  LTrncltrn 40060  trLctrl 40117  TEndoctendo 40711  EDRingRcedring-rN 40713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-riotaBAD 38911
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-undef 8316  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-0g 17503  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-join 18420  df-meet 18421  df-p0 18497  df-p1 18498  df-lat 18504  df-clat 18571  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-grp 18978  df-minusg 18979  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-dvr 20429  df-drng 20755  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-atl 39256  df-cvlat 39280  df-hlat 39309  df-llines 39457  df-lplanes 39458  df-lvols 39459  df-lines 39460  df-psubsp 39462  df-pmap 39463  df-padd 39755  df-lhyp 39947  df-laut 39948  df-ldil 40063  df-ltrn 40064  df-trl 40118  df-tendo 40714  df-edring-rN 40715
This theorem is referenced by:  erngdv-rN  40960
  Copyright terms: Public domain W3C validator