Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem4-rN Structured version   Visualization version   GIF version

Theorem erngdvlem4-rN 40960
Description: Lemma for erngdv 40954. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m-r 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
edlemk6.j-r = (join‘𝐾)
edlemk6.m-r = (meet‘𝐾)
edlemk6.r-r 𝑅 = ((trL‘𝐾)‘𝑊)
edlemk6.p-r 𝑄 = ((oc‘𝐾)‘𝑊)
edlemk6.z-r 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
edlemk6.y-r 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
edlemk6.x-r 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
edlemk6.u-r 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
Assertion
Ref Expression
erngdvlem4-rN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Distinct variable groups:   𝐵,𝑓   𝐷,𝑠   𝑎,𝑏,𝑠,𝐸   𝑓,𝑎,𝐾,𝑏,𝑠   𝑓,𝐻,𝑠   𝑂,𝑠   𝑇,𝑎,𝑏,𝑓,𝑠   𝑊,𝑎,𝑏,𝑓,𝑠   𝑃,𝑠   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐵,𝑏   𝑔,𝑠,𝐵,𝑧   𝐻,𝑏,𝑔,𝑧   𝑔,𝐾,𝑧   𝑀,𝑠   𝑃,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑔,𝑧   𝑔,𝑊,𝑧   𝑧,𝑌   𝑔,𝑍   𝑓,𝑔,𝑧   ,𝑏,𝑔,𝑠,𝑧
Allowed substitution hints:   𝐵(,𝑎)   𝐷(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑃(𝑓,,𝑎,𝑏)   𝑄(𝑓,,𝑠,𝑎)   𝑅(𝑓,,𝑠,𝑎)   𝑇()   𝑈(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝐸(𝑧,𝑓,𝑔,)   𝐻(,𝑎)   𝐼(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝐾()   𝑀(𝑧,𝑓,𝑔,,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝑂(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑊()   𝑋(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑌(𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑍(𝑧,𝑓,,𝑠,𝑎,𝑏)

Proof of Theorem erngdvlem4-rN
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . . 5 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . . 5 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 40770 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2740 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
87adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷))
9 erngrnglem.m-r . . . 4 𝑀 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎))
10 eqid 2734 . . . . 5 (.r𝐷) = (.r𝐷)
111, 2, 3, 4, 10erngfmul-rN 40774 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑏𝑎)))
129, 11eqtr4id 2788 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (.r𝐷))
1312adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝑀 = (.r𝐷))
14 ernggrplem.b-r . . . . . . 7 𝐵 = (Base‘𝐾)
15 ernggrplem.o-r . . . . . . 7 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1614, 1, 2, 3, 15tendo0cl 40751 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1716, 6eleqtrrd 2836 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ (Base‘𝐷))
18 ernggrplem.p-r . . . . . . . 8 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
19 eqid 2734 . . . . . . . . 9 (+g𝐷) = (+g𝐷)
201, 2, 3, 4, 19erngfplus-rN 40771 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
2118, 20eqtr4id 2788 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
2221oveqd 7430 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂𝑃𝑂) = (𝑂(+g𝐷)𝑂))
2314, 1, 2, 3, 15, 18tendo0pl 40752 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂𝐸) → (𝑂𝑃𝑂) = 𝑂)
2416, 23mpdan 687 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂𝑃𝑂) = 𝑂)
2522, 24eqtr3d 2771 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g𝐷)𝑂) = 𝑂)
26 ernggrplem.i-r . . . . . . 7 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
271, 4, 14, 2, 3, 18, 15, 26erngdvlem1-rN 40957 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
28 eqid 2734 . . . . . . 7 (0g𝐷) = (0g𝐷)
295, 19, 28isgrpid2 18963 . . . . . 6 (𝐷 ∈ Grp → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g𝐷)𝑂) = 𝑂) ↔ (0g𝐷) = 𝑂))
3027, 29syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g𝐷)𝑂) = 𝑂) ↔ (0g𝐷) = 𝑂))
3117, 25, 30mpbi2and 712 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = 𝑂)
3231eqcomd 2740 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 = (0g𝐷))
3332adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝑂 = (0g𝐷))
341, 2, 3tendoidcl 40730 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
3534, 6eleqtrrd 2836 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷))
366eleq2d 2819 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢 ∈ (Base‘𝐷) ↔ 𝑢𝐸))
37 simpl 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3834adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
39 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → 𝑢𝐸)
401, 2, 3, 4, 10erngmul-rN 40775 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑢𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇)))
4137, 38, 39, 40syl12anc 836 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇)))
421, 2, 3tendo1mulr 40732 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢 ∘ ( I ↾ 𝑇)) = 𝑢)
4341, 42eqtrd 2769 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢)
441, 2, 3, 4, 10erngmul-rN 40775 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑢(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢))
4537, 39, 38, 44syl12anc 836 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢(.r𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢))
461, 2, 3tendo1mul 40731 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (( I ↾ 𝑇) ∘ 𝑢) = 𝑢)
4745, 46eqtrd 2769 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)
4843, 47jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑢𝐸) → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢))
4948ex 412 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢𝐸 → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)))
5036, 49sylbid 240 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑢 ∈ (Base‘𝐷) → ((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)))
5150ralrimiv 3132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢))
521, 4, 14, 2, 3, 18, 15, 26, 9erngdvlem3-rN 40959 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
53 eqid 2734 . . . . . . 7 (1r𝐷) = (1r𝐷)
545, 10, 53isringid 20236 . . . . . 6 (𝐷 ∈ Ring → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
5552, 54syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r𝐷)𝑢) = 𝑢 ∧ (𝑢(.r𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r𝐷) = ( I ↾ 𝑇)))
5635, 51, 55mpbi2and 712 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
5756eqcomd 2740 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
5857adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r𝐷))
5952adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring)
60 simp1l 1197 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6112oveqd 7430 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
6260, 61syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) = (𝑠(.r𝐷)𝑡))
63 simp2l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → 𝑠𝐸)
64 simp3l 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → 𝑡𝐸)
651, 2, 3, 4, 10erngmul-rN 40775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
6660, 63, 64, 65syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠(.r𝐷)𝑡) = (𝑡𝑠))
6762, 66eqtrd 2769 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) = (𝑡𝑠))
68 simp3 1138 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑡𝐸𝑡𝑂))
69 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝐸𝑠𝑂))
7014, 1, 2, 3, 15tendoconid 40790 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑡𝑂) ∧ (𝑠𝐸𝑠𝑂)) → (𝑡𝑠) ≠ 𝑂)
7160, 68, 69, 70syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑡𝑠) ≠ 𝑂)
7267, 71eqnetrd 2998 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝑡𝐸𝑡𝑂)) → (𝑠𝑀𝑡) ≠ 𝑂)
7314, 1, 2, 3, 15tendo1ne0 40789 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
7473adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 𝑂)
75 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 simplrl 776 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑇)
77 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝐸𝑠𝑂))
78 edlemk6.j-r . . . . 5 = (join‘𝐾)
79 edlemk6.m-r . . . . 5 = (meet‘𝐾)
80 edlemk6.r-r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
81 edlemk6.p-r . . . . 5 𝑄 = ((oc‘𝐾)‘𝑊)
82 edlemk6.z-r . . . . 5 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
83 edlemk6.y-r . . . . 5 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
84 edlemk6.x-r . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
85 edlemk6.u-r . . . . 5 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
8614, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml6 40942 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝐸 ∧ (𝑈‘(𝑠)) = ))
8786simpld 494 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝐸)
8875, 76, 77, 87syl3anc 1372 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑈𝐸)
8912oveqd 7430 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠𝑀𝑈) = (𝑠(.r𝐷)𝑈))
9089ad2antrr 726 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝑀𝑈) = (𝑠(.r𝐷)𝑈))
91 simprl 770 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → 𝑠𝐸)
921, 2, 3, 4, 10erngmul-rN 40775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑈𝐸)) → (𝑠(.r𝐷)𝑈) = (𝑈𝑠))
9375, 91, 88, 92syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠(.r𝐷)𝑈) = (𝑈𝑠))
9414, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15cdleml8 40944 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝑠) = ( I ↾ 𝑇))
95943expa 1118 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑈𝑠) = ( I ↾ 𝑇))
9693, 95eqtrd 2769 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠(.r𝐷)𝑈) = ( I ↾ 𝑇))
9790, 96eqtrd 2769 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠𝑂)) → (𝑠𝑀𝑈) = ( I ↾ 𝑇))
988, 13, 33, 58, 59, 72, 74, 88, 97isdrngrd 20734 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  ifcif 4505  cmpt 5205   I cid 5557  ccnv 5664  cres 5667  ccom 5669  cfv 6541  crio 7369  (class class class)co 7413  cmpo 7415  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  occoc 17281  0gc0g 17455  joincjn 18327  meetcmee 18328  Grpcgrp 18920  1rcur 20146  Ringcrg 20198  DivRingcdr 20697  HLchlt 39310  LHypclh 39945  LTrncltrn 40062  trLctrl 40119  TEndoctendo 40713  EDRingRcedring-rN 40715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-0g 17457  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-drng 20699  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120  df-tendo 40716  df-edring-rN 40717
This theorem is referenced by:  erngdv-rN  40962
  Copyright terms: Public domain W3C validator