Step | Hyp | Ref
| Expression |
1 | | ernggrp.h-r |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | ernggrplem.t-r |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
3 | | ernggrplem.e-r |
. . . . 5
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
4 | | ernggrp.d-r |
. . . . 5
⊢ 𝐷 =
((EDRingR‘𝐾)‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
6 | 1, 2, 3, 4, 5 | erngbase-rN 38750 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
7 | 6 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
8 | 7 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷)) |
9 | | erngrnglem.m-r |
. . . 4
⊢ 𝑀 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ 𝑎)) |
10 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝐷) = (.r‘𝐷) |
11 | 1, 2, 3, 4, 10 | erngfmul-rN 38754 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (.r‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑏 ∘ 𝑎))) |
12 | 9, 11 | eqtr4id 2798 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑀 = (.r‘𝐷)) |
13 | 12 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝑀 = (.r‘𝐷)) |
14 | | ernggrplem.b-r |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
15 | | ernggrplem.o-r |
. . . . . . 7
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
16 | 14, 1, 2, 3, 15 | tendo0cl 38731 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
17 | 16, 6 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ (Base‘𝐷)) |
18 | | ernggrplem.p-r |
. . . . . . . 8
⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝐷) = (+g‘𝐷) |
20 | 1, 2, 3, 4, 19 | erngfplus-rN 38751 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
21 | 18, 20 | eqtr4id 2798 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
22 | 21 | oveqd 7272 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂𝑃𝑂) = (𝑂(+g‘𝐷)𝑂)) |
23 | 14, 1, 2, 3, 15, 18 | tendo0pl 38732 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝐸) → (𝑂𝑃𝑂) = 𝑂) |
24 | 16, 23 | mpdan 683 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂𝑃𝑂) = 𝑂) |
25 | 22, 24 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘𝐷)𝑂) = 𝑂) |
26 | | ernggrplem.i-r |
. . . . . . 7
⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
27 | 1, 4, 14, 2, 3, 18, 15, 26 | erngdvlem1-rN 38937 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐷) = (0g‘𝐷) |
29 | 5, 19, 28 | isgrpid2 18531 |
. . . . . 6
⊢ (𝐷 ∈ Grp → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g‘𝐷)𝑂) = 𝑂) ↔ (0g‘𝐷) = 𝑂)) |
30 | 27, 29 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑂 ∈ (Base‘𝐷) ∧ (𝑂(+g‘𝐷)𝑂) = 𝑂) ↔ (0g‘𝐷) = 𝑂)) |
31 | 17, 25, 30 | mpbi2and 708 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐷) = 𝑂) |
32 | 31 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 = (0g‘𝐷)) |
33 | 32 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝑂 = (0g‘𝐷)) |
34 | 1, 2, 3 | tendoidcl 38710 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
35 | 34, 6 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷)) |
36 | 6 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ (Base‘𝐷) ↔ 𝑢 ∈ 𝐸)) |
37 | | simpl 482 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
38 | 34 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → ( I ↾ 𝑇) ∈ 𝐸) |
39 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → 𝑢 ∈ 𝐸) |
40 | 1, 2, 3, 4, 10 | erngmul-rN 38755 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇))) |
41 | 37, 38, 39, 40 | syl12anc 833 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = (𝑢 ∘ ( I ↾ 𝑇))) |
42 | 1, 2, 3 | tendo1mulr 38712 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢 ∘ ( I ↾ 𝑇)) = 𝑢) |
43 | 41, 42 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢) |
44 | 1, 2, 3, 4, 10 | erngmul-rN 38755 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢)) |
45 | 37, 39, 38, 44 | syl12anc 833 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ 𝑢)) |
46 | 1, 2, 3 | tendo1mul 38711 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇) ∘ 𝑢) = 𝑢) |
47 | 45, 46 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢) |
48 | 43, 47 | jca 511 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) |
49 | 48 | ex 412 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ 𝐸 → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢))) |
50 | 36, 49 | sylbid 239 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ (Base‘𝐷) → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢))) |
51 | 50 | ralrimiv 3106 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) |
52 | 1, 4, 14, 2, 3, 18, 15, 26, 9 | erngdvlem3-rN 38939 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |
53 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝐷) = (1r‘𝐷) |
54 | 5, 10, 53 | isringid 19727 |
. . . . . 6
⊢ (𝐷 ∈ Ring → ((( I
↾ 𝑇) ∈
(Base‘𝐷) ∧
∀𝑢 ∈
(Base‘𝐷)((( I ↾
𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r‘𝐷) = ( I ↾ 𝑇))) |
55 | 52, 54 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r‘𝐷) = ( I ↾ 𝑇))) |
56 | 35, 51, 55 | mpbi2and 708 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) |
57 | 56 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) = (1r‘𝐷)) |
58 | 57 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r‘𝐷)) |
59 | 52 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring) |
60 | | simp1l 1195 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
61 | 12 | oveqd 7272 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠𝑀𝑡) = (𝑠(.r‘𝐷)𝑡)) |
62 | 60, 61 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑠𝑀𝑡) = (𝑠(.r‘𝐷)𝑡)) |
63 | | simp2l 1197 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → 𝑠 ∈ 𝐸) |
64 | | simp3l 1199 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → 𝑡 ∈ 𝐸) |
65 | 1, 2, 3, 4, 10 | erngmul-rN 38755 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑡) = (𝑡 ∘ 𝑠)) |
66 | 60, 63, 64, 65 | syl12anc 833 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑠(.r‘𝐷)𝑡) = (𝑡 ∘ 𝑠)) |
67 | 62, 66 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑠𝑀𝑡) = (𝑡 ∘ 𝑠)) |
68 | | simp3 1136 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) |
69 | | simp2 1135 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) |
70 | 14, 1, 2, 3, 15 | tendoconid 38770 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑡 ∘ 𝑠) ≠ 𝑂) |
71 | 60, 68, 69, 70 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑡 ∘ 𝑠) ≠ 𝑂) |
72 | 67, 71 | eqnetrd 3010 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 𝑂)) → (𝑠𝑀𝑡) ≠ 𝑂) |
73 | 14, 1, 2, 3, 15 | tendo1ne0 38769 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
74 | 73 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 𝑂) |
75 | | simpll 763 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
76 | | simplrl 773 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → ℎ ∈ 𝑇) |
77 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) |
78 | | edlemk6.j-r |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
79 | | edlemk6.m-r |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
80 | | edlemk6.r-r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
81 | | edlemk6.p-r |
. . . . 5
⊢ 𝑄 = ((oc‘𝐾)‘𝑊) |
82 | | edlemk6.z-r |
. . . . 5
⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) |
83 | | edlemk6.y-r |
. . . . 5
⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
84 | | edlemk6.x-r |
. . . . 5
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) |
85 | | edlemk6.u-r |
. . . . 5
⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) |
86 | 14, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15 | cdleml6 38922 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
87 | 86 | simpld 494 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → 𝑈 ∈ 𝐸) |
88 | 75, 76, 77, 87 | syl3anc 1369 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → 𝑈 ∈ 𝐸) |
89 | 14, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15 | cdleml9 38925 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → 𝑈 ≠ 𝑂) |
90 | 89 | 3expa 1116 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → 𝑈 ≠ 𝑂) |
91 | 12 | oveqd 7272 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠𝑀𝑈) = (𝑠(.r‘𝐷)𝑈)) |
92 | 91 | ad2antrr 722 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑠𝑀𝑈) = (𝑠(.r‘𝐷)𝑈)) |
93 | | simprl 767 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → 𝑠 ∈ 𝐸) |
94 | 1, 2, 3, 4, 10 | erngmul-rN 38755 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑈) = (𝑈 ∘ 𝑠)) |
95 | 75, 93, 88, 94 | syl12anc 833 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑠(.r‘𝐷)𝑈) = (𝑈 ∘ 𝑠)) |
96 | 14, 78, 79, 1, 2, 80, 81, 82, 83, 84, 85, 3, 15 | cdleml8 38924 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
97 | 96 | 3expa 1116 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
98 | 95, 97 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑠(.r‘𝐷)𝑈) = ( I ↾ 𝑇)) |
99 | 92, 98 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂)) → (𝑠𝑀𝑈) = ( I ↾ 𝑇)) |
100 | 8, 13, 33, 58, 59, 72, 74, 88, 90, 99 | isdrngrd 19932 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing) |