Step | Hyp | Ref
| Expression |
1 | | ernggrp.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | erngdv.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
3 | | erngdv.e |
. . . . 5
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
4 | | ernggrp.d |
. . . . 5
⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
6 | 1, 2, 3, 4, 5 | erngbase 38742 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
7 | 6 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
8 | 7 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷)) |
9 | | erngrnglem.m |
. . . 4
⊢ + = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏)) |
10 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝐷) = (.r‘𝐷) |
11 | 1, 2, 3, 4, 10 | erngfmul 38746 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (.r‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏))) |
12 | 9, 11 | eqtr4id 2798 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + =
(.r‘𝐷)) |
13 | 12 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → + =
(.r‘𝐷)) |
14 | | erngdv.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
15 | | erngdv.o |
. . . . . . 7
⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
16 | 14, 1, 2, 3, 15 | tendo0cl 38731 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐸) |
17 | 16, 6 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐷)) |
18 | | erngdv.p |
. . . . . . . 8
⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝐷) = (+g‘𝐷) |
20 | 1, 2, 3, 4, 19 | erngfplus 38743 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
21 | 18, 20 | eqtr4id 2798 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
22 | 21 | oveqd 7272 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 𝑃 0 ) = ( 0 (+g‘𝐷) 0 )) |
23 | 14, 1, 2, 3, 15, 18 | tendo0pl 38732 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 0 ∈ 𝐸) → ( 0 𝑃 0 ) = 0 ) |
24 | 16, 23 | mpdan 683 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 𝑃 0 ) = 0 ) |
25 | 22, 24 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 (+g‘𝐷) 0 ) = 0 ) |
26 | | erngdv.i |
. . . . . . 7
⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
27 | 1, 4, 14, 2, 3, 18, 15, 26 | erngdvlem1 38929 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐷) = (0g‘𝐷) |
29 | 5, 19, 28 | isgrpid2 18531 |
. . . . . 6
⊢ (𝐷 ∈ Grp → (( 0 ∈
(Base‘𝐷) ∧ (
0
(+g‘𝐷)
0 ) =
0 )
↔ (0g‘𝐷) = 0 )) |
30 | 27, 29 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( 0 ∈ (Base‘𝐷) ∧ ( 0 (+g‘𝐷) 0 ) = 0 ) ↔
(0g‘𝐷) =
0
)) |
31 | 17, 25, 30 | mpbi2and 708 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐷) = 0 ) |
32 | 31 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 =
(0g‘𝐷)) |
33 | 32 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 0 =
(0g‘𝐷)) |
34 | 1, 4, 14, 2, 3, 18, 15, 26, 9 | erngdvlem3 38931 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |
35 | 1, 2, 3, 4, 34 | erng1lem 38928 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) |
36 | 35 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) = (1r‘𝐷)) |
37 | 36 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r‘𝐷)) |
38 | 34 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring) |
39 | | simp1l 1195 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | 12 | oveqd 7272 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) |
41 | 39, 40 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) |
42 | | simp2l 1197 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → 𝑠 ∈ 𝐸) |
43 | | simp3l 1199 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → 𝑡 ∈ 𝐸) |
44 | 1, 2, 3, 4, 10 | erngmul 38747 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) |
45 | 39, 42, 43, 44 | syl12anc 833 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) |
46 | 41, 45 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 + 𝑡) = (𝑠 ∘ 𝑡)) |
47 | 14, 1, 2, 3, 15 | tendoconid 38770 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 ∘ 𝑡) ≠ 0 ) |
48 | 47 | 3adant1r 1175 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 ∘ 𝑡) ≠ 0 ) |
49 | 46, 48 | eqnetrd 3010 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 + 𝑡) ≠ 0 ) |
50 | 14, 1, 2, 3, 15 | tendo1ne0 38769 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 0 ) |
51 | 50 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 0 ) |
52 | | simpll 763 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
53 | | simplrl 773 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ℎ ∈ 𝑇) |
54 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) |
55 | | edlemk6.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
56 | | edlemk6.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
57 | | edlemk6.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
58 | | edlemk6.p |
. . . . 5
⊢ 𝑄 = ((oc‘𝐾)‘𝑊) |
59 | | edlemk6.z |
. . . . 5
⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) |
60 | | edlemk6.y |
. . . . 5
⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
61 | | edlemk6.x |
. . . . 5
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) |
62 | | edlemk6.u |
. . . . 5
⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) |
63 | 14, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15 | cdleml6 38922 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
64 | 63 | simpld 494 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) |
65 | 52, 53, 54, 64 | syl3anc 1369 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) |
66 | 14, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15 | cdleml9 38925 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ≠ 0 ) |
67 | 66 | 3expa 1116 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ≠ 0 ) |
68 | 12 | oveqd 7272 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑈 + 𝑠) = (𝑈(.r‘𝐷)𝑠)) |
69 | 68 | ad2antrr 722 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 + 𝑠) = (𝑈(.r‘𝐷)𝑠)) |
70 | | simprl 767 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) |
71 | 1, 2, 3, 4, 10 | erngmul 38747 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸)) → (𝑈(.r‘𝐷)𝑠) = (𝑈 ∘ 𝑠)) |
72 | 52, 65, 70, 71 | syl12anc 833 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈(.r‘𝐷)𝑠) = (𝑈 ∘ 𝑠)) |
73 | 14, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15 | cdleml8 38924 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
74 | 73 | 3expa 1116 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
75 | 69, 72, 74 | 3eqtrd 2782 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 + 𝑠) = ( I ↾ 𝑇)) |
76 | 8, 13, 33, 37, 38, 49, 51, 65, 67, 75 | isdrngd 19931 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing) |