| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ernggrp.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | erngdv.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 3 |  | erngdv.e | . . . . 5
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| 4 |  | ernggrp.d | . . . . 5
⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | 
| 5 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 6 | 1, 2, 3, 4, 5 | erngbase 40804 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) | 
| 7 | 6 | eqcomd 2742 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) | 
| 8 | 7 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷)) | 
| 9 |  | erngrnglem.m | . . . 4
⊢  + = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏)) | 
| 10 |  | eqid 2736 | . . . . 5
⊢
(.r‘𝐷) = (.r‘𝐷) | 
| 11 | 1, 2, 3, 4, 10 | erngfmul 40808 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (.r‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑎 ∘ 𝑏))) | 
| 12 | 9, 11 | eqtr4id 2795 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + =
(.r‘𝐷)) | 
| 13 | 12 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → + =
(.r‘𝐷)) | 
| 14 |  | erngdv.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝐾) | 
| 15 |  | erngdv.o | . . . . . . 7
⊢  0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | 
| 16 | 14, 1, 2, 3, 15 | tendo0cl 40793 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐸) | 
| 17 | 16, 6 | eleqtrrd 2843 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐷)) | 
| 18 |  | erngdv.p | . . . . . . . 8
⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | 
| 19 |  | eqid 2736 | . . . . . . . . 9
⊢
(+g‘𝐷) = (+g‘𝐷) | 
| 20 | 1, 2, 3, 4, 19 | erngfplus 40805 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) | 
| 21 | 18, 20 | eqtr4id 2795 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) | 
| 22 | 21 | oveqd 7449 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 𝑃 0 ) = ( 0 (+g‘𝐷) 0 )) | 
| 23 | 14, 1, 2, 3, 15, 18 | tendo0pl 40794 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 0 ∈ 𝐸) → ( 0 𝑃 0 ) = 0 ) | 
| 24 | 16, 23 | mpdan 687 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 𝑃 0 ) = 0 ) | 
| 25 | 22, 24 | eqtr3d 2778 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 (+g‘𝐷) 0 ) = 0 ) | 
| 26 |  | erngdv.i | . . . . . . 7
⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | 
| 27 | 1, 4, 14, 2, 3, 18, 15, 26 | erngdvlem1 40991 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) | 
| 28 |  | eqid 2736 | . . . . . . 7
⊢
(0g‘𝐷) = (0g‘𝐷) | 
| 29 | 5, 19, 28 | isgrpid2 18995 | . . . . . 6
⊢ (𝐷 ∈ Grp → (( 0 ∈
(Base‘𝐷) ∧ (
0
(+g‘𝐷)
0 ) =
0 )
↔ (0g‘𝐷) = 0 )) | 
| 30 | 27, 29 | syl 17 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( 0 ∈ (Base‘𝐷) ∧ ( 0 (+g‘𝐷) 0 ) = 0 ) ↔
(0g‘𝐷) =
0
)) | 
| 31 | 17, 25, 30 | mpbi2and 712 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐷) = 0 ) | 
| 32 | 31 | eqcomd 2742 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 =
(0g‘𝐷)) | 
| 33 | 32 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 0 =
(0g‘𝐷)) | 
| 34 | 1, 4, 14, 2, 3, 18, 15, 26, 9 | erngdvlem3 40993 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | 
| 35 | 1, 2, 3, 4, 34 | erng1lem 40990 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) | 
| 36 | 35 | eqcomd 2742 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) = (1r‘𝐷)) | 
| 37 | 36 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r‘𝐷)) | 
| 38 | 34 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring) | 
| 39 |  | simp1l 1197 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 40 | 12 | oveqd 7449 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) | 
| 41 | 39, 40 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 + 𝑡) = (𝑠(.r‘𝐷)𝑡)) | 
| 42 |  | simp2l 1199 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → 𝑠 ∈ 𝐸) | 
| 43 |  | simp3l 1201 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → 𝑡 ∈ 𝐸) | 
| 44 | 1, 2, 3, 4, 10 | erngmul 40809 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸)) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) | 
| 45 | 39, 42, 43, 44 | syl12anc 836 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠(.r‘𝐷)𝑡) = (𝑠 ∘ 𝑡)) | 
| 46 | 41, 45 | eqtrd 2776 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 + 𝑡) = (𝑠 ∘ 𝑡)) | 
| 47 | 14, 1, 2, 3, 15 | tendoconid 40832 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 ∘ 𝑡) ≠ 0 ) | 
| 48 | 47 | 3adant1r 1177 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 ∘ 𝑡) ≠ 0 ) | 
| 49 | 46, 48 | eqnetrd 3007 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ (𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 )) → (𝑠 + 𝑡) ≠ 0 ) | 
| 50 | 14, 1, 2, 3, 15 | tendo1ne0 40831 | . . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 0 ) | 
| 51 | 50 | adantr 480 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 0 ) | 
| 52 |  | simpll 766 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 53 |  | simplrl 776 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ℎ ∈ 𝑇) | 
| 54 |  | simpr 484 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) | 
| 55 |  | edlemk6.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 56 |  | edlemk6.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 57 |  | edlemk6.r | . . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 58 |  | edlemk6.p | . . . . 5
⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | 
| 59 |  | edlemk6.z | . . . . 5
⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | 
| 60 |  | edlemk6.y | . . . . 5
⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | 
| 61 |  | edlemk6.x | . . . . 5
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | 
| 62 |  | edlemk6.u | . . . . 5
⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | 
| 63 | 14, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15 | cdleml6 40984 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) | 
| 64 | 63 | simpld 494 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) | 
| 65 | 52, 53, 54, 64 | syl3anc 1372 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) | 
| 66 | 12 | oveqd 7449 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑈 + 𝑠) = (𝑈(.r‘𝐷)𝑠)) | 
| 67 | 66 | ad2antrr 726 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 + 𝑠) = (𝑈(.r‘𝐷)𝑠)) | 
| 68 |  | simprl 770 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) | 
| 69 | 1, 2, 3, 4, 10 | erngmul 40809 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸)) → (𝑈(.r‘𝐷)𝑠) = (𝑈 ∘ 𝑠)) | 
| 70 | 52, 65, 68, 69 | syl12anc 836 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈(.r‘𝐷)𝑠) = (𝑈 ∘ 𝑠)) | 
| 71 | 14, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15 | cdleml8 40986 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) | 
| 72 | 71 | 3expa 1118 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) | 
| 73 | 67, 70, 72 | 3eqtrd 2780 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 + 𝑠) = ( I ↾ 𝑇)) | 
| 74 | 8, 13, 33, 37, 38, 49, 51, 65, 73 | isdrngd 20766 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing) |