MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1 Structured version   Visualization version   GIF version

Theorem dchr1 27301
Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr1.g 𝐺 = (DChr‘𝑁)
dchr1.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1.o 1 = (0g𝐺)
dchr1.u 𝑈 = (Unit‘𝑍)
dchr1.n (𝜑𝑁 ∈ ℕ)
dchr1.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchr1 (𝜑 → ( 1𝐴) = 1)

Proof of Theorem dchr1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2737 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2737 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 dchr1.u . . . 4 𝑈 = (Unit‘𝑍)
6 eqid 2737 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))
7 dchr1.n . . . 4 (𝜑𝑁 ∈ ℕ)
81, 2, 3, 4, 5, 6, 7dchr1cl 27295 . . 3 (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺))
9 eleq1w 2824 . . . . . 6 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
109ifbid 4549 . . . . 5 (𝑘 = 𝑥 → if(𝑘𝑈, 1, 0) = if(𝑥𝑈, 1, 0))
1110cbvmptv 5255 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥𝑈, 1, 0))
12 eqid 2737 . . . 4 (+g𝐺) = (+g𝐺)
131, 2, 3, 4, 5, 11, 12, 8dchrmullid 27296 . . 3 (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
141dchrabl 27298 . . . 4 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
15 ablgrp 19803 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
16 dchr1.o . . . . 5 1 = (0g𝐺)
173, 12, 16isgrpid2 18994 . . . 4 (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
187, 14, 15, 174syl 19 . . 3 (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
198, 13, 18mpbi2and 712 . 2 (𝜑1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
20 simpr 484 . . . 4 ((𝜑𝑘 = 𝐴) → 𝑘 = 𝐴)
21 dchr1.a . . . . 5 (𝜑𝐴𝑈)
2221adantr 480 . . . 4 ((𝜑𝑘 = 𝐴) → 𝐴𝑈)
2320, 22eqeltrd 2841 . . 3 ((𝜑𝑘 = 𝐴) → 𝑘𝑈)
2423iftrued 4533 . 2 ((𝜑𝑘 = 𝐴) → if(𝑘𝑈, 1, 0) = 1)
254, 5unitss 20376 . . 3 𝑈 ⊆ (Base‘𝑍)
2625, 21sselid 3981 . 2 (𝜑𝐴 ∈ (Base‘𝑍))
27 1cnd 11256 . 2 (𝜑 → 1 ∈ ℂ)
2819, 24, 26, 27fvmptd 7023 1 (𝜑 → ( 1𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ifcif 4525  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  cn 12266  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  Abelcabl 19799  Unitcui 20355  ℤ/nczn 21513  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-nsg 19142  df-eqg 19143  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zn 21517  df-dchr 27277
This theorem is referenced by:  dchrinv  27305  dchr1re  27307  dchrsum2  27312  rpvmasumlem  27531  rpvmasum2  27556
  Copyright terms: Public domain W3C validator