| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchr1 | Structured version Visualization version GIF version | ||
| Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchr1.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchr1.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchr1.o | ⊢ 1 = (0g‘𝐺) |
| dchr1.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchr1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchr1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| dchr1 | ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchr1.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchr1.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 5 | dchr1.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
| 6 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
| 7 | dchr1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dchr1cl 27214 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺)) |
| 9 | eleq1w 2817 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈)) | |
| 10 | 9 | ifbid 4524 | . . . . 5 ⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑈, 1, 0) = if(𝑥 ∈ 𝑈, 1, 0)) |
| 11 | 10 | cbvmptv 5225 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥 ∈ 𝑈, 1, 0)) |
| 12 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 13 | 1, 2, 3, 4, 5, 11, 12, 8 | dchrmullid 27215 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
| 14 | 1 | dchrabl 27217 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
| 15 | ablgrp 19766 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 16 | dchr1.o | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
| 17 | 3, 12, 16 | isgrpid2 18959 | . . . 4 ⊢ (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
| 18 | 7, 14, 15, 17 | 4syl 19 | . . 3 ⊢ (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
| 19 | 8, 13, 18 | mpbi2and 712 | . 2 ⊢ (𝜑 → 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 = 𝐴) | |
| 21 | dchr1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐴 ∈ 𝑈) |
| 23 | 20, 22 | eqeltrd 2834 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 ∈ 𝑈) |
| 24 | 23 | iftrued 4508 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → if(𝑘 ∈ 𝑈, 1, 0) = 1) |
| 25 | 4, 5 | unitss 20336 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑍) |
| 26 | 25, 21 | sselid 3956 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑍)) |
| 27 | 1cnd 11230 | . 2 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 28 | 19, 24, 26, 27 | fvmptd 6993 | 1 ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 ℕcn 12240 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 Abelcabl 19762 Unitcui 20315 ℤ/nℤczn 21463 DChrcdchr 27195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-nsg 19107 df-eqg 19108 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-2idl 21211 df-cnfld 21316 df-zring 21408 df-zn 21467 df-dchr 27196 |
| This theorem is referenced by: dchrinv 27224 dchr1re 27226 dchrsum2 27231 rpvmasumlem 27450 rpvmasum2 27475 |
| Copyright terms: Public domain | W3C validator |