MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1 Structured version   Visualization version   GIF version

Theorem dchr1 26740
Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr1.g 𝐺 = (DChr‘𝑁)
dchr1.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1.o 1 = (0g𝐺)
dchr1.u 𝑈 = (Unit‘𝑍)
dchr1.n (𝜑𝑁 ∈ ℕ)
dchr1.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchr1 (𝜑 → ( 1𝐴) = 1)

Proof of Theorem dchr1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2733 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2733 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 dchr1.u . . . 4 𝑈 = (Unit‘𝑍)
6 eqid 2733 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))
7 dchr1.n . . . 4 (𝜑𝑁 ∈ ℕ)
81, 2, 3, 4, 5, 6, 7dchr1cl 26734 . . 3 (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺))
9 eleq1w 2817 . . . . . 6 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
109ifbid 4550 . . . . 5 (𝑘 = 𝑥 → if(𝑘𝑈, 1, 0) = if(𝑥𝑈, 1, 0))
1110cbvmptv 5260 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥𝑈, 1, 0))
12 eqid 2733 . . . 4 (+g𝐺) = (+g𝐺)
131, 2, 3, 4, 5, 11, 12, 8dchrmullid 26735 . . 3 (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
141dchrabl 26737 . . . 4 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
15 ablgrp 19646 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
16 dchr1.o . . . . 5 1 = (0g𝐺)
173, 12, 16isgrpid2 18857 . . . 4 (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
187, 14, 15, 174syl 19 . . 3 (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
198, 13, 18mpbi2and 711 . 2 (𝜑1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
20 simpr 486 . . . 4 ((𝜑𝑘 = 𝐴) → 𝑘 = 𝐴)
21 dchr1.a . . . . 5 (𝜑𝐴𝑈)
2221adantr 482 . . . 4 ((𝜑𝑘 = 𝐴) → 𝐴𝑈)
2320, 22eqeltrd 2834 . . 3 ((𝜑𝑘 = 𝐴) → 𝑘𝑈)
2423iftrued 4535 . 2 ((𝜑𝑘 = 𝐴) → if(𝑘𝑈, 1, 0) = 1)
254, 5unitss 20179 . . 3 𝑈 ⊆ (Base‘𝑍)
2625, 21sselid 3979 . 2 (𝜑𝐴 ∈ (Base‘𝑍))
27 1cnd 11205 . 2 (𝜑 → 1 ∈ ℂ)
2819, 24, 26, 27fvmptd 7001 1 (𝜑 → ( 1𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  ifcif 4527  cmpt 5230  cfv 6540  (class class class)co 7404  cc 11104  0cc0 11106  1c1 11107  cn 12208  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Grpcgrp 18815  Abelcabl 19642  Unitcui 20158  ℤ/nczn 21036  DChrcdchr 26715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-nsg 18998  df-eqg 18999  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-subrg 20349  df-lmod 20461  df-lss 20531  df-lsp 20571  df-sra 20773  df-rgmod 20774  df-lidl 20775  df-rsp 20776  df-2idl 20844  df-cnfld 20930  df-zring 21003  df-zn 21040  df-dchr 26716
This theorem is referenced by:  dchrinv  26744  dchr1re  26746  dchrsum2  26751  rpvmasumlem  26970  rpvmasum2  26995
  Copyright terms: Public domain W3C validator