| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchr1 | Structured version Visualization version GIF version | ||
| Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchr1.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchr1.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchr1.o | ⊢ 1 = (0g‘𝐺) |
| dchr1.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchr1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchr1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| dchr1 | ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchr1.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchr1.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 5 | dchr1.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
| 6 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
| 7 | dchr1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dchr1cl 27182 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺)) |
| 9 | eleq1w 2812 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈)) | |
| 10 | 9 | ifbid 4497 | . . . . 5 ⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑈, 1, 0) = if(𝑥 ∈ 𝑈, 1, 0)) |
| 11 | 10 | cbvmptv 5193 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥 ∈ 𝑈, 1, 0)) |
| 12 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 13 | 1, 2, 3, 4, 5, 11, 12, 8 | dchrmullid 27183 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
| 14 | 1 | dchrabl 27185 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
| 15 | ablgrp 19690 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 16 | dchr1.o | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
| 17 | 3, 12, 16 | isgrpid2 18881 | . . . 4 ⊢ (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
| 18 | 7, 14, 15, 17 | 4syl 19 | . . 3 ⊢ (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
| 19 | 8, 13, 18 | mpbi2and 712 | . 2 ⊢ (𝜑 → 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
| 20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 = 𝐴) | |
| 21 | dchr1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐴 ∈ 𝑈) |
| 23 | 20, 22 | eqeltrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 ∈ 𝑈) |
| 24 | 23 | iftrued 4481 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → if(𝑘 ∈ 𝑈, 1, 0) = 1) |
| 25 | 4, 5 | unitss 20287 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑍) |
| 26 | 25, 21 | sselid 3930 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑍)) |
| 27 | 1cnd 11099 | . 2 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 28 | 19, 24, 26, 27 | fvmptd 6931 | 1 ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ifcif 4473 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 1c1 10999 ℕcn 12117 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Grpcgrp 18838 Abelcabl 19686 Unitcui 20266 ℤ/nℤczn 21432 DChrcdchr 27163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-0g 17337 df-imas 17404 df-qus 17405 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-nsg 19029 df-eqg 19030 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-subrng 20454 df-subrg 20478 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-2idl 21180 df-cnfld 21285 df-zring 21377 df-zn 21436 df-dchr 27164 |
| This theorem is referenced by: dchrinv 27192 dchr1re 27194 dchrsum2 27199 rpvmasumlem 27418 rpvmasum2 27443 |
| Copyright terms: Public domain | W3C validator |