MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1 Structured version   Visualization version   GIF version

Theorem dchr1 25535
Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr1.g 𝐺 = (DChr‘𝑁)
dchr1.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1.o 1 = (0g𝐺)
dchr1.u 𝑈 = (Unit‘𝑍)
dchr1.n (𝜑𝑁 ∈ ℕ)
dchr1.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchr1 (𝜑 → ( 1𝐴) = 1)

Proof of Theorem dchr1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2778 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2778 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 dchr1.u . . . 4 𝑈 = (Unit‘𝑍)
6 eqid 2778 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))
7 dchr1.n . . . 4 (𝜑𝑁 ∈ ℕ)
81, 2, 3, 4, 5, 6, 7dchr1cl 25529 . . 3 (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺))
9 eleq1w 2848 . . . . . 6 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
109ifbid 4372 . . . . 5 (𝑘 = 𝑥 → if(𝑘𝑈, 1, 0) = if(𝑥𝑈, 1, 0))
1110cbvmptv 5028 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥𝑈, 1, 0))
12 eqid 2778 . . . 4 (+g𝐺) = (+g𝐺)
131, 2, 3, 4, 5, 11, 12, 8dchrmulid2 25530 . . 3 (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
141dchrabl 25532 . . . 4 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
15 ablgrp 18671 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
16 dchr1.o . . . . 5 1 = (0g𝐺)
173, 12, 16isgrpid2 17927 . . . 4 (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
187, 14, 15, 174syl 19 . . 3 (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
198, 13, 18mpbi2and 699 . 2 (𝜑1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
20 simpr 477 . . . 4 ((𝜑𝑘 = 𝐴) → 𝑘 = 𝐴)
21 dchr1.a . . . . 5 (𝜑𝐴𝑈)
2221adantr 473 . . . 4 ((𝜑𝑘 = 𝐴) → 𝐴𝑈)
2320, 22eqeltrd 2866 . . 3 ((𝜑𝑘 = 𝐴) → 𝑘𝑈)
2423iftrued 4358 . 2 ((𝜑𝑘 = 𝐴) → if(𝑘𝑈, 1, 0) = 1)
254, 5unitss 19133 . . 3 𝑈 ⊆ (Base‘𝑍)
2625, 21sseldi 3856 . 2 (𝜑𝐴 ∈ (Base‘𝑍))
27 1cnd 10434 . 2 (𝜑 → 1 ∈ ℂ)
2819, 24, 26, 27fvmptd 6601 1 (𝜑 → ( 1𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  ifcif 4350  cmpt 5008  cfv 6188  (class class class)co 6976  cc 10333  0cc0 10335  1c1 10336  cn 11439  Basecbs 16339  +gcplusg 16421  0gc0g 16569  Grpcgrp 17891  Abelcabl 18667  Unitcui 19112  ℤ/nczn 20352  DChrcdchr 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-tpos 7695  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-ec 8091  df-qs 8095  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-fz 12709  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-0g 16571  df-imas 16637  df-qus 16638  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-grp 17894  df-minusg 17895  df-sbg 17896  df-subg 18060  df-nsg 18061  df-eqg 18062  df-cmn 18668  df-abl 18669  df-mgp 18963  df-ur 18975  df-ring 19022  df-cring 19023  df-oppr 19096  df-dvdsr 19114  df-unit 19115  df-invr 19145  df-subrg 19256  df-lmod 19358  df-lss 19426  df-lsp 19466  df-sra 19666  df-rgmod 19667  df-lidl 19668  df-rsp 19669  df-2idl 19726  df-cnfld 20248  df-zring 20320  df-zn 20356  df-dchr 25511
This theorem is referenced by:  dchrinv  25539  dchr1re  25541  dchrsum2  25546  rpvmasumlem  25765  rpvmasum2  25790
  Copyright terms: Public domain W3C validator