MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1 Structured version   Visualization version   GIF version

Theorem dchr1 27201
Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr1.g 𝐺 = (DChr‘𝑁)
dchr1.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1.o 1 = (0g𝐺)
dchr1.u 𝑈 = (Unit‘𝑍)
dchr1.n (𝜑𝑁 ∈ ℕ)
dchr1.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchr1 (𝜑 → ( 1𝐴) = 1)

Proof of Theorem dchr1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2731 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 dchr1.u . . . 4 𝑈 = (Unit‘𝑍)
6 eqid 2731 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))
7 dchr1.n . . . 4 (𝜑𝑁 ∈ ℕ)
81, 2, 3, 4, 5, 6, 7dchr1cl 27195 . . 3 (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺))
9 eleq1w 2814 . . . . . 6 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
109ifbid 4498 . . . . 5 (𝑘 = 𝑥 → if(𝑘𝑈, 1, 0) = if(𝑥𝑈, 1, 0))
1110cbvmptv 5197 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥𝑈, 1, 0))
12 eqid 2731 . . . 4 (+g𝐺) = (+g𝐺)
131, 2, 3, 4, 5, 11, 12, 8dchrmullid 27196 . . 3 (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
141dchrabl 27198 . . . 4 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
15 ablgrp 19703 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
16 dchr1.o . . . . 5 1 = (0g𝐺)
173, 12, 16isgrpid2 18895 . . . 4 (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
187, 14, 15, 174syl 19 . . 3 (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
198, 13, 18mpbi2and 712 . 2 (𝜑1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
20 simpr 484 . . . 4 ((𝜑𝑘 = 𝐴) → 𝑘 = 𝐴)
21 dchr1.a . . . . 5 (𝜑𝐴𝑈)
2221adantr 480 . . . 4 ((𝜑𝑘 = 𝐴) → 𝐴𝑈)
2320, 22eqeltrd 2831 . . 3 ((𝜑𝑘 = 𝐴) → 𝑘𝑈)
2423iftrued 4482 . 2 ((𝜑𝑘 = 𝐴) → if(𝑘𝑈, 1, 0) = 1)
254, 5unitss 20300 . . 3 𝑈 ⊆ (Base‘𝑍)
2625, 21sselid 3927 . 2 (𝜑𝐴 ∈ (Base‘𝑍))
27 1cnd 11113 . 2 (𝜑 → 1 ∈ ℂ)
2819, 24, 26, 27fvmptd 6942 1 (𝜑 → ( 1𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ifcif 4474  cmpt 5174  cfv 6487  (class class class)co 7352  cc 11010  0cc0 11012  1c1 11013  cn 12131  Basecbs 17126  +gcplusg 17167  0gc0g 17349  Grpcgrp 18852  Abelcabl 19699  Unitcui 20279  ℤ/nczn 21445  DChrcdchr 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-inf 9333  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-0g 17351  df-imas 17418  df-qus 17419  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19042  df-nsg 19043  df-eqg 19044  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-subrng 20467  df-subrg 20491  df-lmod 20801  df-lss 20871  df-lsp 20911  df-sra 21113  df-rgmod 21114  df-lidl 21151  df-rsp 21152  df-2idl 21193  df-cnfld 21298  df-zring 21390  df-zn 21449  df-dchr 27177
This theorem is referenced by:  dchrinv  27205  dchr1re  27207  dchrsum2  27212  rpvmasumlem  27431  rpvmasum2  27456
  Copyright terms: Public domain W3C validator