![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchr1 | Structured version Visualization version GIF version |
Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr1.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchr1.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchr1.o | ⊢ 1 = (0g‘𝐺) |
dchr1.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchr1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchr1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
dchr1 | ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr1.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchr1.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | eqid 2735 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
5 | dchr1.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
6 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
7 | dchr1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dchr1cl 27310 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺)) |
9 | eleq1w 2822 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈)) | |
10 | 9 | ifbid 4554 | . . . . 5 ⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑈, 1, 0) = if(𝑥 ∈ 𝑈, 1, 0)) |
11 | 10 | cbvmptv 5261 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥 ∈ 𝑈, 1, 0)) |
12 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 1, 2, 3, 4, 5, 11, 12, 8 | dchrmullid 27311 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
14 | 1 | dchrabl 27313 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
15 | ablgrp 19818 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
16 | dchr1.o | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
17 | 3, 12, 16 | isgrpid2 19007 | . . . 4 ⊢ (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
18 | 7, 14, 15, 17 | 4syl 19 | . . 3 ⊢ (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
19 | 8, 13, 18 | mpbi2and 712 | . 2 ⊢ (𝜑 → 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
20 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 = 𝐴) | |
21 | dchr1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐴 ∈ 𝑈) |
23 | 20, 22 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 ∈ 𝑈) |
24 | 23 | iftrued 4539 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → if(𝑘 ∈ 𝑈, 1, 0) = 1) |
25 | 4, 5 | unitss 20393 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑍) |
26 | 25, 21 | sselid 3993 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑍)) |
27 | 1cnd 11254 | . 2 ⊢ (𝜑 → 1 ∈ ℂ) | |
28 | 19, 24, 26, 27 | fvmptd 7023 | 1 ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 ℕcn 12264 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Grpcgrp 18964 Abelcabl 19814 Unitcui 20372 ℤ/nℤczn 21531 DChrcdchr 27291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-imas 17555 df-qus 17556 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-nsg 19155 df-eqg 19156 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zn 21535 df-dchr 27292 |
This theorem is referenced by: dchrinv 27320 dchr1re 27322 dchrsum2 27327 rpvmasumlem 27546 rpvmasum2 27571 |
Copyright terms: Public domain | W3C validator |