| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngid2 | Structured version Visualization version GIF version | ||
| Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| drngid2.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngid2.t | ⊢ · = (.r‘𝑅) |
| drngid2.o | ⊢ 0 = (0g‘𝑅) |
| drngid2.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| drngid2 | ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) | |
| 2 | eldifsn 4758 | . . . . 5 ⊢ (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 )) | |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼)) |
| 5 | drngid2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | drngid2.o | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 7 | eqid 2730 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) | |
| 8 | 5, 6, 7 | drngmgp 20660 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) |
| 9 | difss 4107 | . . . . . 6 ⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | |
| 10 | eqid 2730 | . . . . . . . 8 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 11 | 10, 5 | mgpbas 20060 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 12 | 7, 11 | ressbas2 17214 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
| 13 | 9, 12 | ax-mp 5 | . . . . 5 ⊢ (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
| 14 | 5 | fvexi 6879 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 15 | difexg 5292 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V) | |
| 16 | drngid2.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
| 17 | 10, 16 | mgpplusg 20059 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 18 | 7, 17 | ressplusg 17260 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
| 19 | 14, 15, 18 | mp2b 10 | . . . . 5 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
| 20 | eqid 2730 | . . . . 5 ⊢ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) | |
| 21 | 13, 19, 20 | isgrpid2 18914 | . . . 4 ⊢ (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
| 22 | 8, 21 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
| 23 | 4, 22 | bitrid 283 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
| 24 | drngid2.u | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 25 | 5, 6, 24, 7 | drngid 20661 | . . 3 ⊢ (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
| 26 | 25 | eqeq1d 2732 | . 2 ⊢ (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
| 27 | 23, 26 | bitr4d 282 | 1 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 Vcvv 3455 ∖ cdif 3919 ⊆ wss 3922 {csn 4597 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 ↾s cress 17206 +gcplusg 17226 .rcmulr 17227 0gc0g 17408 Grpcgrp 18871 mulGrpcmgp 20055 1rcur 20096 DivRingcdr 20644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-drng 20646 |
| This theorem is referenced by: erng1r 40981 dvalveclem 41011 |
| Copyright terms: Public domain | W3C validator |