![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drngid2 | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.) |
Ref | Expression |
---|---|
drngid2.b | ⊢ 𝐵 = (Base‘𝑅) |
drngid2.t | ⊢ · = (.r‘𝑅) |
drngid2.o | ⊢ 0 = (0g‘𝑅) |
drngid2.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
drngid2 | ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1086 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) | |
2 | eldifsn 4792 | . . . . 5 ⊢ (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 )) | |
3 | 2 | anbi1i 622 | . . . 4 ⊢ ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) |
4 | 1, 3 | bitr4i 277 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼)) |
5 | drngid2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | drngid2.o | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | eqid 2725 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) | |
8 | 5, 6, 7 | drngmgp 20652 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) |
9 | difss 4128 | . . . . . 6 ⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | |
10 | eqid 2725 | . . . . . . . 8 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | 10, 5 | mgpbas 20092 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
12 | 7, 11 | ressbas2 17221 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
13 | 9, 12 | ax-mp 5 | . . . . 5 ⊢ (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
14 | 5 | fvexi 6910 | . . . . . 6 ⊢ 𝐵 ∈ V |
15 | difexg 5330 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V) | |
16 | drngid2.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
17 | 10, 16 | mgpplusg 20090 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘𝑅)) |
18 | 7, 17 | ressplusg 17274 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
19 | 14, 15, 18 | mp2b 10 | . . . . 5 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
20 | eqid 2725 | . . . . 5 ⊢ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) | |
21 | 13, 19, 20 | isgrpid2 18941 | . . . 4 ⊢ (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
22 | 8, 21 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
23 | 4, 22 | bitrid 282 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
24 | drngid2.u | . . . 4 ⊢ 1 = (1r‘𝑅) | |
25 | 5, 6, 24, 7 | drngid 20654 | . . 3 ⊢ (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
26 | 25 | eqeq1d 2727 | . 2 ⊢ (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
27 | 23, 26 | bitr4d 281 | 1 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 Vcvv 3461 ∖ cdif 3941 ⊆ wss 3944 {csn 4630 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 +gcplusg 17236 .rcmulr 17237 0gc0g 17424 Grpcgrp 18898 mulGrpcmgp 20086 1rcur 20133 DivRingcdr 20636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-dvr 20352 df-drng 20638 |
This theorem is referenced by: erng1r 40595 dvalveclem 40625 |
Copyright terms: Public domain | W3C validator |