Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngid2 | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.) |
Ref | Expression |
---|---|
drngid2.b | ⊢ 𝐵 = (Base‘𝑅) |
drngid2.t | ⊢ · = (.r‘𝑅) |
drngid2.o | ⊢ 0 = (0g‘𝑅) |
drngid2.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
drngid2 | ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) | |
2 | eldifsn 4730 | . . . . 5 ⊢ (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 )) | |
3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ (𝐼 · 𝐼) = 𝐼)) |
4 | 1, 3 | bitr4i 277 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼)) |
5 | drngid2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | drngid2.o | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | eqid 2737 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) | |
8 | 5, 6, 7 | drngmgp 20074 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) |
9 | difss 4076 | . . . . . 6 ⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | |
10 | eqid 2737 | . . . . . . . 8 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | 10, 5 | mgpbas 19793 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
12 | 7, 11 | ressbas2 17016 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
13 | 9, 12 | ax-mp 5 | . . . . 5 ⊢ (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
14 | 5 | fvexi 6823 | . . . . . 6 ⊢ 𝐵 ∈ V |
15 | difexg 5264 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V) | |
16 | drngid2.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
17 | 10, 16 | mgpplusg 19791 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘𝑅)) |
18 | 7, 17 | ressplusg 17067 | . . . . . 6 ⊢ ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
19 | 14, 15, 18 | mp2b 10 | . . . . 5 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) |
20 | eqid 2737 | . . . . 5 ⊢ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) | |
21 | 13, 19, 20 | isgrpid2 18683 | . . . 4 ⊢ (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
22 | 8, 21 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
23 | 4, 22 | bitrid 282 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
24 | drngid2.u | . . . 4 ⊢ 1 = (1r‘𝑅) | |
25 | 5, 6, 24, 7 | drngid 20076 | . . 3 ⊢ (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))) |
26 | 25 | eqeq1d 2739 | . 2 ⊢ (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼)) |
27 | 23, 26 | bitr4d 281 | 1 ⊢ (𝑅 ∈ DivRing → ((𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ∖ cdif 3893 ⊆ wss 3896 {csn 4569 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 ↾s cress 17008 +gcplusg 17029 .rcmulr 17030 0gc0g 17217 Grpcgrp 18644 mulGrpcmgp 19787 1rcur 19804 DivRingcdr 20062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-minusg 18648 df-mgp 19788 df-ur 19805 df-ring 19852 df-oppr 19929 df-dvdsr 19950 df-unit 19951 df-invr 19981 df-dvr 19992 df-drng 20064 |
This theorem is referenced by: erng1r 39221 dvalveclem 39251 |
Copyright terms: Public domain | W3C validator |