MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngid2 Structured version   Visualization version   GIF version

Theorem drngid2 20078
Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
drngid2.b 𝐵 = (Base‘𝑅)
drngid2.t · = (.r𝑅)
drngid2.o 0 = (0g𝑅)
drngid2.u 1 = (1r𝑅)
Assertion
Ref Expression
drngid2 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))

Proof of Theorem drngid2
StepHypRef Expression
1 df-3an 1088 . . . 4 ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼𝐵𝐼0 ) ∧ (𝐼 · 𝐼) = 𝐼))
2 eldifsn 4730 . . . . 5 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
32anbi1i 624 . . . 4 ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼𝐵𝐼0 ) ∧ (𝐼 · 𝐼) = 𝐼))
41, 3bitr4i 277 . . 3 ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼))
5 drngid2.b . . . . 5 𝐵 = (Base‘𝑅)
6 drngid2.o . . . . 5 0 = (0g𝑅)
7 eqid 2737 . . . . 5 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
85, 6, 7drngmgp 20074 . . . 4 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
9 difss 4076 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
10 eqid 2737 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1110, 5mgpbas 19793 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
127, 11ressbas2 17016 . . . . . 6 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
139, 12ax-mp 5 . . . . 5 (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
145fvexi 6823 . . . . . 6 𝐵 ∈ V
15 difexg 5264 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
16 drngid2.t . . . . . . . 8 · = (.r𝑅)
1710, 16mgpplusg 19791 . . . . . . 7 · = (+g‘(mulGrp‘𝑅))
187, 17ressplusg 17067 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1914, 15, 18mp2b 10 . . . . 5 · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
20 eqid 2737 . . . . 5 (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
2113, 19, 20isgrpid2 18683 . . . 4 (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
228, 21syl 17 . . 3 (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
234, 22bitrid 282 . 2 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
24 drngid2.u . . . 4 1 = (1r𝑅)
255, 6, 24, 7drngid 20076 . . 3 (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
2625eqeq1d 2739 . 2 (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
2723, 26bitr4d 281 1 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  Vcvv 3441  cdif 3893  wss 3896  {csn 4569  cfv 6463  (class class class)co 7313  Basecbs 16979  s cress 17008  +gcplusg 17029  .rcmulr 17030  0gc0g 17217  Grpcgrp 18644  mulGrpcmgp 19787  1rcur 19804  DivRingcdr 20062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-tpos 8087  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-0g 17219  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-grp 18647  df-minusg 18648  df-mgp 19788  df-ur 19805  df-ring 19852  df-oppr 19929  df-dvdsr 19950  df-unit 19951  df-invr 19981  df-dvr 19992  df-drng 20064
This theorem is referenced by:  erng1r  39221  dvalveclem  39251
  Copyright terms: Public domain W3C validator