Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngid2 Structured version   Visualization version   GIF version

Theorem drngid2 19518
 Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
drngid2.b 𝐵 = (Base‘𝑅)
drngid2.t · = (.r𝑅)
drngid2.o 0 = (0g𝑅)
drngid2.u 1 = (1r𝑅)
Assertion
Ref Expression
drngid2 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))

Proof of Theorem drngid2
StepHypRef Expression
1 df-3an 1086 . . . 4 ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼𝐵𝐼0 ) ∧ (𝐼 · 𝐼) = 𝐼))
2 eldifsn 4704 . . . . 5 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
32anbi1i 626 . . . 4 ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼𝐵𝐼0 ) ∧ (𝐼 · 𝐼) = 𝐼))
41, 3bitr4i 281 . . 3 ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼))
5 drngid2.b . . . . 5 𝐵 = (Base‘𝑅)
6 drngid2.o . . . . 5 0 = (0g𝑅)
7 eqid 2824 . . . . 5 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
85, 6, 7drngmgp 19514 . . . 4 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
9 difss 4094 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
10 eqid 2824 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1110, 5mgpbas 19245 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
127, 11ressbas2 16555 . . . . . 6 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
139, 12ax-mp 5 . . . . 5 (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
145fvexi 6675 . . . . . 6 𝐵 ∈ V
15 difexg 5217 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
16 drngid2.t . . . . . . . 8 · = (.r𝑅)
1710, 16mgpplusg 19243 . . . . . . 7 · = (+g‘(mulGrp‘𝑅))
187, 17ressplusg 16612 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1914, 15, 18mp2b 10 . . . . 5 · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
20 eqid 2824 . . . . 5 (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
2113, 19, 20isgrpid2 18140 . . . 4 (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
228, 21syl 17 . . 3 (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
234, 22syl5bb 286 . 2 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
24 drngid2.u . . . 4 1 = (1r𝑅)
255, 6, 24, 7drngid 19516 . . 3 (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
2625eqeq1d 2826 . 2 (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
2723, 26bitr4d 285 1 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  Vcvv 3480   ∖ cdif 3916   ⊆ wss 3919  {csn 4550  ‘cfv 6343  (class class class)co 7149  Basecbs 16483   ↾s cress 16484  +gcplusg 16565  .rcmulr 16566  0gc0g 16713  Grpcgrp 18103  mulGrpcmgp 19239  1rcur 19251  DivRingcdr 19502 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19504 This theorem is referenced by:  erng1r  38236  dvalveclem  38266
 Copyright terms: Public domain W3C validator