MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngid2 Structured version   Visualization version   GIF version

Theorem drngid2 19511
Description: Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
drngid2.b 𝐵 = (Base‘𝑅)
drngid2.t · = (.r𝑅)
drngid2.o 0 = (0g𝑅)
drngid2.u 1 = (1r𝑅)
Assertion
Ref Expression
drngid2 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))

Proof of Theorem drngid2
StepHypRef Expression
1 df-3an 1086 . . . 4 ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼𝐵𝐼0 ) ∧ (𝐼 · 𝐼) = 𝐼))
2 eldifsn 4680 . . . . 5 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
32anbi1i 626 . . . 4 ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ ((𝐼𝐵𝐼0 ) ∧ (𝐼 · 𝐼) = 𝐼))
41, 3bitr4i 281 . . 3 ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼))
5 drngid2.b . . . . 5 𝐵 = (Base‘𝑅)
6 drngid2.o . . . . 5 0 = (0g𝑅)
7 eqid 2798 . . . . 5 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
85, 6, 7drngmgp 19507 . . . 4 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
9 difss 4059 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
10 eqid 2798 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1110, 5mgpbas 19238 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
127, 11ressbas2 16547 . . . . . 6 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
139, 12ax-mp 5 . . . . 5 (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
145fvexi 6659 . . . . . 6 𝐵 ∈ V
15 difexg 5195 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
16 drngid2.t . . . . . . . 8 · = (.r𝑅)
1710, 16mgpplusg 19236 . . . . . . 7 · = (+g‘(mulGrp‘𝑅))
187, 17ressplusg 16604 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1914, 15, 18mp2b 10 . . . . 5 · = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
20 eqid 2798 . . . . 5 (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })))
2113, 19, 20isgrpid2 18132 . . . 4 (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
228, 21syl 17 . . 3 (𝑅 ∈ DivRing → ((𝐼 ∈ (𝐵 ∖ { 0 }) ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
234, 22syl5bb 286 . 2 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
24 drngid2.u . . . 4 1 = (1r𝑅)
255, 6, 24, 7drngid 19509 . . 3 (𝑅 ∈ DivRing → 1 = (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
2625eqeq1d 2800 . 2 (𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ (0g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))) = 𝐼))
2723, 26bitr4d 285 1 (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  mulGrpcmgp 19232  1rcur 19244  DivRingcdr 19495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497
This theorem is referenced by:  erng1r  38291  dvalveclem  38321
  Copyright terms: Public domain W3C validator