Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrref Structured version   Visualization version   GIF version

Theorem isomgrref 46113
Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgrref (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺)

Proof of Theorem isomgrref
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
2 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3pm3.2i 472 . . 3 ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))
54a1i 11 . 2 (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺)))
6 isomgreqve 46103 . 2 (((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))) → 𝐺 IsomGr 𝐺)
71, 1, 5, 6syl21anc 837 1 (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   class class class wbr 5106  cfv 6497  Vtxcvtx 27989  iEdgciedg 27990  UHGraphcuhgr 28049   IsomGr cisomgr 46097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-uhgr 28051  df-isomgr 46099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator