Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrref Structured version   Visualization version   GIF version

Theorem isomgrref 44145
Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgrref (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺)

Proof of Theorem isomgrref
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
2 eqid 2820 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2820 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3pm3.2i 473 . . 3 ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))
54a1i 11 . 2 (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺)))
6 isomgreqve 44135 . 2 (((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))) → 𝐺 IsomGr 𝐺)
71, 1, 5, 6syl21anc 835 1 (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5042  cfv 6331  Vtxcvtx 26768  iEdgciedg 26769  UHGraphcuhgr 26828   IsomGr cisomgr 44129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-uhgr 26830  df-isomgr 44131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator