Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomgrref | Structured version Visualization version GIF version |
Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) |
Ref | Expression |
---|---|
isomgrref | ⊢ (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
2 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | pm3.2i 471 | . . 3 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺)) |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))) |
6 | isomgreqve 45617 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))) → 𝐺 IsomGr 𝐺) | |
7 | 1, 1, 5, 6 | syl21anc 835 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ‘cfv 6473 Vtxcvtx 27596 iEdgciedg 27597 UHGraphcuhgr 27656 IsomGr cisomgr 45611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-uhgr 27658 df-isomgr 45613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |