![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomgrref | Structured version Visualization version GIF version |
Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) |
Ref | Expression |
---|---|
isomgrref | ⊢ (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
2 | eqid 2733 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2733 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | pm3.2i 472 | . . 3 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺)) |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))) |
6 | isomgreqve 46103 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ ((Vtx‘𝐺) = (Vtx‘𝐺) ∧ (iEdg‘𝐺) = (iEdg‘𝐺))) → 𝐺 IsomGr 𝐺) | |
7 | 1, 1, 5, 6 | syl21anc 837 | 1 ⊢ (𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 ‘cfv 6497 Vtxcvtx 27989 iEdgciedg 27990 UHGraphcuhgr 28049 IsomGr cisomgr 46097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-uhgr 28051 df-isomgr 46099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |