![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map1 | Structured version Visualization version GIF version |
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8472 | . . 3 ⊢ 1o = {∅} | |
2 | 1 | oveq1i 7418 | . 2 ⊢ (1o ↑m 𝐴) = ({∅} ↑m 𝐴) |
3 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
4 | snmapen1 9038 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} ↑m 𝐴) ≈ 1o) | |
5 | 3, 4 | mpan 688 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↑m 𝐴) ≈ 1o) |
6 | 2, 5 | eqbrtrid 5183 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 {csn 4628 class class class wbr 5148 (class class class)co 7408 1oc1o 8458 ↑m cmap 8819 ≈ cen 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |