| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map1 | Structured version Visualization version GIF version | ||
| Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8398 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | oveq1i 7362 | . 2 ⊢ (1o ↑m 𝐴) = ({∅} ↑m 𝐴) |
| 3 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 4 | snmapen1 8968 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} ↑m 𝐴) ≈ 1o) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↑m 𝐴) ≈ 1o) |
| 6 | 2, 5 | eqbrtrid 5128 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {csn 4575 class class class wbr 5093 (class class class)co 7352 1oc1o 8384 ↑m cmap 8756 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |