| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map1 | Structured version Visualization version GIF version | ||
| Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8450 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | oveq1i 7404 | . 2 ⊢ (1o ↑m 𝐴) = ({∅} ↑m 𝐴) |
| 3 | 0ex 5270 | . . 3 ⊢ ∅ ∈ V | |
| 4 | snmapen1 9016 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} ↑m 𝐴) ≈ 1o) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↑m 𝐴) ≈ 1o) |
| 6 | 2, 5 | eqbrtrid 5150 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 {csn 4597 class class class wbr 5115 (class class class)co 7394 1oc1o 8436 ↑m cmap 8803 ≈ cen 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |