| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map1 | Structured version Visualization version GIF version | ||
| Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8392 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | oveq1i 7356 | . 2 ⊢ (1o ↑m 𝐴) = ({∅} ↑m 𝐴) |
| 3 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 4 | snmapen1 8961 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} ↑m 𝐴) ≈ 1o) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({∅} ↑m 𝐴) ≈ 1o) |
| 6 | 2, 5 | eqbrtrid 5126 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑m 𝐴) ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 class class class wbr 5091 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |