MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map1 Structured version   Visualization version   GIF version

Theorem map1 8784
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
map1 (𝐴𝑉 → (1om 𝐴) ≈ 1o)

Proof of Theorem map1
StepHypRef Expression
1 df1o2 8279 . . 3 1o = {∅}
21oveq1i 7265 . 2 (1om 𝐴) = ({∅} ↑m 𝐴)
3 0ex 5226 . . 3 ∅ ∈ V
4 snmapen1 8783 . . 3 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} ↑m 𝐴) ≈ 1o)
53, 4mpan 686 . 2 (𝐴𝑉 → ({∅} ↑m 𝐴) ≈ 1o)
62, 5eqbrtrid 5105 1 (𝐴𝑉 → (1om 𝐴) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  c0 4253  {csn 4558   class class class wbr 5070  (class class class)co 7255  1oc1o 8260  m cmap 8573  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-er 8456  df-map 8575  df-en 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator