MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map1 Structured version   Visualization version   GIF version

Theorem map1 8962
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
map1 (𝐴𝑉 → (1om 𝐴) ≈ 1o)

Proof of Theorem map1
StepHypRef Expression
1 df1o2 8392 . . 3 1o = {∅}
21oveq1i 7356 . 2 (1om 𝐴) = ({∅} ↑m 𝐴)
3 0ex 5245 . . 3 ∅ ∈ V
4 snmapen1 8961 . . 3 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} ↑m 𝐴) ≈ 1o)
53, 4mpan 690 . 2 (𝐴𝑉 → ({∅} ↑m 𝐴) ≈ 1o)
62, 5eqbrtrid 5126 1 (𝐴𝑉 → (1om 𝐴) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  c0 4283  {csn 4576   class class class wbr 5091  (class class class)co 7346  1oc1o 8378  m cmap 8750  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1o 8385  df-er 8622  df-map 8752  df-en 8870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator