| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setcsnterm | Structured version Visualization version GIF version | ||
| Description: The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| Ref | Expression |
|---|---|
| setcsnterm | ⊢ (SetCat‘{{𝐴}}) ∈ TermCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2735 | . . . 4 ⊢ (⊤ → (SetCat‘{{𝐴}}) = (SetCat‘{{𝐴}})) | |
| 2 | snex 5416 | . . . . 5 ⊢ {{𝐴}} ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → {{𝐴}} ∈ V) |
| 4 | velsn 4622 | . . . . . . 7 ⊢ (𝑥 ∈ {{𝐴}} ↔ 𝑥 = {𝐴}) | |
| 5 | mosn 48705 | . . . . . . 7 ⊢ (𝑥 = {𝐴} → ∃*𝑝 𝑝 ∈ 𝑥) | |
| 6 | 4, 5 | sylbi 217 | . . . . . 6 ⊢ (𝑥 ∈ {{𝐴}} → ∃*𝑝 𝑝 ∈ 𝑥) |
| 7 | 6 | rgen 3052 | . . . . 5 ⊢ ∀𝑥 ∈ {{𝐴}}∃*𝑝 𝑝 ∈ 𝑥 |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑥 ∈ {{𝐴}}∃*𝑝 𝑝 ∈ 𝑥) |
| 9 | 1, 3, 8 | setcthin 49164 | . . 3 ⊢ (⊤ → (SetCat‘{{𝐴}}) ∈ ThinCat) |
| 10 | 9 | mptru 1546 | . 2 ⊢ (SetCat‘{{𝐴}}) ∈ ThinCat |
| 11 | snex 5416 | . . 3 ⊢ {𝐴} ∈ V | |
| 12 | 11 | ensn1 9043 | . 2 ⊢ {{𝐴}} ≈ 1o |
| 13 | eqid 2734 | . . . . 5 ⊢ (SetCat‘{{𝐴}}) = (SetCat‘{{𝐴}}) | |
| 14 | 13, 3 | setcbas 18095 | . . . 4 ⊢ (⊤ → {{𝐴}} = (Base‘(SetCat‘{{𝐴}}))) |
| 15 | 14 | mptru 1546 | . . 3 ⊢ {{𝐴}} = (Base‘(SetCat‘{{𝐴}})) |
| 16 | 15 | istermc3 49175 | . 2 ⊢ ((SetCat‘{{𝐴}}) ∈ TermCat ↔ ((SetCat‘{{𝐴}}) ∈ ThinCat ∧ {{𝐴}} ≈ 1o)) |
| 17 | 10, 12, 16 | mpbir2an 711 | 1 ⊢ (SetCat‘{{𝐴}}) ∈ TermCat |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ∃*wmo 2536 ∀wral 3050 Vcvv 3463 {csn 4606 class class class wbr 5123 ‘cfv 6541 1oc1o 8481 ≈ cen 8964 Basecbs 17230 SetCatcsetc 18092 ThinCatcthinc 49118 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-setc 18093 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: setc1oterm 49189 |
| Copyright terms: Public domain | W3C validator |